
FEATURE ARTICLE: BY INVITATION OF THE EDITOR-IN-CHIEF

Accelerating Scientific Discovery With
AI-Aided Automation
Tapio Schneider , California Institute of Technology, Pasadena, CA, 91125, USA

Ilkay Altintas , University of California, San Diego, La Jolla, CA, 92093, USA

Daniel Atkins , University of Michigan, Ann Arbor, MI, 48109, USA

AI-aided design of experiments and observations, together with robotic instrumentation
and automated learning from data, has the potential to transform science and propel it
forward with unprecedented speed.

In 1620, Francis Bacon urged scientists not only to
observe nature, but also to actively manipulate it to
uncover its secrets.1 This foundational principle of

empirical science has guided centuries of progress,
forming a virtuous circle of iterative exploration: an
explicit or implicit model of a system is used as the
basis for designing experiments or observations; the
resulting data are harnessed to improve the model
through calibration, revision, or even a complete over-
haul; and the cycle repeats (Figure 1). In this context, a
“model” can refer to a specific instance of a theory,
such as a model based on the general theory of relativ-
ity to explain gravitational waves from black hole colli-
sions. It can also encompass empirical models, such as
an empirical model of disease progression, or a combi-
nation of both, such as a climate model that incor-
porates physical laws alongside empirical closure
relations for small-scale processes. The term “data”
encompasses information obtained through observa-
tions, simulation studies, or laboratory experiments.
The process of knowledge generation within this loop
can begin at any stage, whether it be the development
of a new model prompting the generation of new data
or the acquisition of new data inspiring the design or
modification of an existing model.2

Over the past few decades, computing has increas-
ingly assumed a crucial role within this knowledge
generation loop. It fulfills a wide range of functions,
including data processing and analysis, experimental
design and control, and data generation through simu-
lations. This expansion of computing’s involvement has
led to the emergence of entirely new disciplines, such

as computational biology and computational astrophysics.
Despite these advancements, human interventions
have remained a vital component of the loop, which
has inevitably limited the rate of iteration.

We are currently in a transformative phase, facili-
tated by advancements in AI, computing, and the auto-
mation of laboratory and observing systems, as outlined
in a recent consensus study by the National Academies
of Science, Engineering, and Medicine (NASEM).2 The
simultaneous progress in AI, computing, and automa-
tion has the potential to remove human intervention
within the loop, automating and accelerating the rate
of iteration through the knowledge generation loop,
often by orders of magnitude. AI, broadly understood to
include tools ranging from Bayesian learning to deep
learning, now enables us not only to learn about param-
eters and parametric functions within models but even
to derive mathematical theorems3; discover the govern-
ing equations of models4,5; or generate “equation-free”
models, such as AlphaFold, which predicts the 3-D
structure of a protein from its amino acid sequence.6 AI
can also be used for “active learning,” that is, to design
experiments or observations that maximize information
gain on uncertain aspects of a model. This can be
achieved through solutions to Bayesian optimal design
problems, exploration algorithms as used in reinforce-
ment learning, or generative AI models.

In addition to AI advancements, automation and
robotic instrumentation are transforming laboratories
and observational devices. Telescopes, for instance,
are now routinely controlled remotely by computers,
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enabling automated target selection. Similarly, biologi-
cal and chemical laboratories employ microfluidic devi-
ces, facilitating automated experiments at a higher
throughput than manual methods allow. Consequently,
in areas critical to human welfare, such as drug discov-
ery for combating infectious diseases or the develop-
ment of climate models for predicting our future, the
potential for rapid and transformative scientific and
engineering progress is within reach.

AI-AIDED AUTOMATION
IN ACTION

Consider a few pioneering examples:

Bioengineering: Directed evolution is an optimiza-
tion process for protein engineering that mimics
and expedites natural evolution in vitro. Recog-
nized with the Nobel Prize in Chemistry in 2018,
it involves an interactive procedure starting from
a protein state, exploring random mutations,
selecting desirable outcomes through screening
or selection, and repeating until a protein with
the desired properties is obtained. This has sped
up evolution from timescales of millions of years to
weeks. AI is now further accelerating directed evo-
lution: machine learning models trained on tested
variants predict good candidates for further explo-
ration, significantly reducing the experimental bur-
den.7 The entire process, including screening and
selection, can be automated, providing a fast and
efficient means to evolve proteins for technologi-
cal, scientific, and medical applications.8

Chemistry and materials science: The discovery
process for new medicines, agrochemicals, and
everyday materials involves conceiving reac-
tions or materials, their subsequent synthesis,
and their testing or characterization in the
laboratory. This process so far has relied on
human exploration and experimentation. AI can
now speed up the exploration and design pro-
cess, enabling autonomous high-throughput
synthesis9 and rapid characterization. With the
aid of robotic machinery and self-driving labora-
tories, we can now accelerate the pace of discov-
ery and improve the quality of the molecules and
materials of tomorrow.10

Astronomy: Astronomy, being inherently data
intensive, has already witnessed AI-driven dis-
coveries in datasets from sky surveys across
various wavelength bands. Additionally, many
telescopes are now operated robotically and can
be controlled remotely. Consequently, astronomy
is poised to take the next step, where AI will
make adaptive choices about survey strategies,
such as target selection, based on maximizing
information gain about the underlying models.11

It is evident that sweeping changes are under-
way—if not in the entire scientific enterprise, then at
least within specific scientific domains. This evolution
promises a leap in scientific productivity, particularly in
areas where the predictive quality of models and the
added value of new data can be quantified, and both
can be iteratively optimized by cycling through an auto-
mated knowledge discovery loop. The move toward
automated, AI-driven scientific processes brings with it
improved reproducibility, replicability, and shareability
that accompanies workflows driven by code.12 This, in
turn, can focus the attention of scientific communities
and accelerate information flow within them, signaling
a new paradigm in how we approach, understand, and
harness the power of scientific exploration.

REALIZING THE POTENTIAL OF
AI-AIDED AUTOMATION

To fully harness the potential of AI-aided automation in
science and engineering, deliberate planning and the
realignment of incentives are necessary. While models
and data generation methods have strong domain-
specific components (the nodes of the graph in Figure 1),
the approaches to designing experiments and observa-
tions and to learning from data transcend scientific
fields (the edges of the graph in Figure 1), similar to the
way least squares fitting of data can be useful in any
domain. For AI-aided automation to have widespread

FIGURE 1. Science has progressed by iteration through a vir-

tuous circle: models inform the design of experiments or

observations; the data they produce are harnessed to inform,

update, or revise models. In many fields, AI tools together with

automated data acquisition now enable automation and

acceleration of the entire loop, often by orders of magnitude.
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impact across disciplines, it is essential tomake AImeth-
ods for science and engineering accessible and promote
their extensive use, fostering methodological conver-
gence within and among scientific fields.

The availability of open source AI libraries, such as
TensorFlow and PyTorch, has resulted in a surge in AI
usage, including in science and engineering. However,
it is important to note that these off-the-shelf AI tools
may not always be suitable for scientific and engineer-
ing purposes. For instance, they primarily focus on
supervised learning, which relies on labeled input–output
pairs of a process to train a model for it. However, in
many science and engineering problems, obtaining such
labeled data at relevant scales or in sufficient quantities
is challenging. We require AI tools that are implemented
in professionally developed and well-maintained open
source software packages, specifically tailored for sci-
ence and engineering applications, where data typically
are noisy, are heterogeneous, and have missing values.
These tools should align with the needs of the scientific
community, similar to the widely adopted packages in
themachine learning community.

The NASEM report on Automated Research Work-
flows2 put forward several recommendations that, if
put into practice, would expedite the achievement
of the transformative potential of AI-aided automation
in science and engineering. These recommendations
include the following:

1) Train early-career researchers in AI tools: The
next generation of scientists and engineers needs
to be fluent in methods of AI and computing.
AI and computing are the new calculus. Similar
to how calculus and statistics are fundamental
components of their education, learning about
AI principles and applications should be equally
emphasized. Notebook platforms such as Jupyter
and Pluto.jl provide accessible entry points for
learning about AI methods and designing auto-
mated research workflows.

2) Develop cyberinfrastructure for AI: To enable the
widespread adoption of AI tools in science and

engineering, the availability of user-friendly and
professionally maintained software is crucial.
Currently, the focus on peer-reviewed publica-
tions hinders the development of such software.
To address this, sustained funding should be
allocated for research software engineers who
work collaboratively with science and engineering
teams, prioritizing the development of high-quality
open source software. Funders and research insti-
tutions can play a role by making open source
software a requirement in projects and providing
the necessary funding.

3) Incentivize team science: Research as a public
good continues to attract talented early-career
scientists and engineers, who enjoy working
on important problems in cross-functional and
cross-disciplinary teams. However, existing reward
structures that prioritize publications and lead
authorship, coupled with the limited number of
principal investigator positions relative to the
number of those with Ph.D. degrees, create chal-
lenges for careers in science and engineering out-
side the private sector. Stable career prospects
should be provided for researchers who contrib-
ute to team success rather than solely focusing
on individual publication output. This will facili-
tate the realization of the potential of AI-aided
automation in science and engineering.

4) Democratize data and facilitate access: Acceler-
ated adoption of AI-aided automation of science
depends on equitable and sustainable access to
findable, accessible, interoperable, and reusable
(FAIRa) data. Breakthroughs often arise from un-
expected correlations, potentially among diverse
datasets, and the discovery process is greatly
enhanced by FAIR data. With scientific data
volumes increasing exponentially, traditional
methods of downloading and local processing
become impractical. Therefore, data should be
provided in cloud-optimized formats to enable
processing directly where the data are stored,
in the cloud. Funders, research institutions, and
publishers can incentivize FAIR and cloud-
optimized data by implementing open research
requirements and providing funding to support
these initiatives.

We stand at the cusp of the next scientific revolu-
tion, where the frictional cost of human manipulations
in iterating through the virtuous cycle of scientific

SIMILAR TOHOWCALCULUS AND
STATISTICS ARE FUNDAMENTAL
COMPONENTSOF THEIR EDUCATION,
LEARNING ABOUT AI PRINCIPLES
ANDAPPLICATIONS SHOULDBE
EQUALLY EMPHASIZED.
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knowledge discovery can vanish, and the entire loop
can be automated and accelerated. Guiding the trans-
formation will require deliberate nurturing by funders
and research institutions. The structures necessary to
unlock its full potential do not neatly align with the tra-
ditional paradigm of the individual principal investiga-
tor that has prevailed for centuries. The advent of
AI-aided automation in science also raises thought-
provoking questions about the agency and creativity
of scientists as well as the role of serendipity within
automated research workflows. In this new landscape,
scientists will serve as architects of strategy and
instrumentation, designing systems that execute and
iterate automatically, harnessing the power of AI
and automation to exponentially accelerate the suc-
cess model of science that has served us remarkably
well for the past 400 years.
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