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ABSTRACT
MPI is the most widely used interface for high-performance com-
puting (HPC) workloads. Its success lies in its embrace of libraries
and ability to evolve while maintaining backward compatibility for
older codes, enabling them to run on new architectures for many
years. In this paper, we propose a new level of MPI compatibility:
a standard Application Binary Interface (ABI). We review the his-
tory of MPI implementation ABIs, identify the constraints from the
MPI standard and ISO C, and summarize recent efforts to develop
a standard ABI for MPI. We provide the current proposal from
the MPI Forum’s ABI working group, which has been prototyped
both within MPICH and as an independent abstraction layer called
Mukautuva. We also list several use cases that would benefit from
the definition of an ABI while outlining the remaining constraints.
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•Computingmethodologies→Massively parallel algorithms;
• Software and its engineering→Massively parallel systems;
Cooperating communicating processes; Interoperability; Software
libraries and repositories.
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1 INTRODUCTION
MPI [32] has always been an Application Programming Interface
(API) standard, which means that it is standardized in terms of the C
and Fortran programming languages. Implementations are not con-
strained in how they define opaque types (for example, MPI_Comm),
which means they compile into different binary representations.
This is fine for users who only use one implementation, or are
content to recompile their software for each of these. Many users,
including those building both traditional C/C++/Fortran libraries
and new languages that use MPI via the C ABI, are tired of the dupli-
cation of effort required because MPI lacks a standard Application
Binary Interface (ABI).

The potential for implementation agnosticism [15, 39] and specif-
ically an ABI [31], has been recognized for many years. However,
no serious effort was made to standardize an ABI, for a variety
of reasons. Some of the forces acting against ABI standardization
were the diversity of HPC systems, the prevalence of static linking,
and the lack of adoption of third-party languages. Over the past 20
years, the HPC hardware and software ecosystem has changed dra-
matically. Distributing software packages through shared libraries
is now common. Package managers, including HPC-oriented ones
such as Spack [14], distribute binaries that depend on MPI. There
is increasing adoption of MPI by applications written in languages
other than C and Fortran [4, 5, 9]. The MPICHABI Initiative [29, 40]
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was the first serious effort to create mutually interoperable MPI
implementations, by reconciling small differences between the ABIs
of MPICH and MPICH-based implementations. This allows applica-
tions compiled against appropriate versions of MPICH, Intel MPI,
Cray MPI, MVAPICH2 and other implementations to run using the
shared libraries from of any of the other implementations. This is
especially useful to leverage the level of platform-specific special-
ization that goes into some of these libraries.

Since 2014, the appetite for MPI implementation compatibility
has grown dramatically for at least two reasons. First, containers are
an increasingly popular mechanism for distributing HPC software.
Singularity [34, 45] and Shifter [3, 33], among others, now allow
complex scientific applications to be shared more easily by pack-
ing them as self-sustained software images. However, container
portability is hindered [26] by both the lack of a common launch
methodology1 and the absence of an MPI ABI – preventing the
advent of portable containers featuring MPI programs. Second, MPI
is now used by applications written in languages like Python, Julia,
and Rust, which are currently required to build and test against all
supported implementations and support the end-user installation of
their MPI support against the implementation of the user’s system.
A standard ABI would eliminate the 𝑂 (𝑁 ) cost of packaging and
simplify testing. The 𝑂 (𝑁 ) costs due to MPI implementation ABIs
are not unique to these languages.

In the rest of this paper, we describe the constraints associated
with an MPI ABI, the potential benefits for the HPC ecosystem, and
the proposed ABI implementation as defined by the ABI working
group, Performance experiments demonstrate that a high-quality
implementation of the standard ABI in MPICH has negligible over-
head, while the third-party implementation in Mukautuva has a
tolerable overhead. We also discuss important considerations for
compatibility besides the C ABI, including library naming, launch-
ers, and Fortran.

2 BACKGROUND AND RELATEDWORK
The HPC user community has been actively working to address the
issue of ABI compatibility in MPI implementations. For a long time,
the requirements associated with ABI compatibility in MPI have
led to complexities in terms of software deployment, particularly
in large computing centers.

Wi4MPI is a wrapper interface that implements ABI interoper-
ability for MPI, supporting both Fortran and C languages [30]. It
can be used in two ways. First, users can compile their applications
against the generic MPI interface from Wi4MPI and then redirect
them to their implementation of choice. Alternatively, they can
redirect one implementation to another. For Wi4MPI to work, its
wrapper interface needs to be compiled for each source and target
MPI. The performance overhead has been shown to be minimal,
making it an effective tool for running containers in a portable man-
ner. Wi4MPI is leveraged in the Extreme-scale Scientific Software
Stack [24] as a support tool in the e4s-cl container launcher tool,
which implements on-the-fly MPI detection and library translation
at container launch time [37].

A similar effort to Wi4MPI was undertaken at the Perimeter
Institute for Theoretical Physics, leading to MPItrampoline [35],

1Note the PMIx standard [6] has made important progress on addressing this issue.

which defines its own ABI enabling applications’ portability on
several MPI runtimes.

It is known that a patent [41] exists for a specific method of
interoperating different MPI ABIs, preventing its use by the open-
source community.

In general, the availability of a standard ABI will simplify the
tasks of these converters. Instead of having to implement conver-
sions between the two APIs, these adaptation layers will primarily
focus on compilation-related tasks, such as fixing dependency de-
tection and enabling the replacement of one MPI with another.

After the MPI ABI working group was formed, two efforts were
started to prototype the proposed designs, to understand their feasi-
bility. The first of these was Mukautuva [22], which is a standalone
ABI abstraction layer that maps from its own ABI (i.e. an approxima-
tion to the one under discussion in the working group) to MPICH
and Open MPI by redirecting MPI symbols through a translation
layer to the underlying MPI implementation, with renamed sym-
bols (via dlsym) to avoid conflicts. The final design of Mukautuva
is unintentionally quite similar to MPItrampoline; this convergence
may be an indication of the suitability of their design. Meanwhile,
a prototype was developed in MPICH [46]. Working together, these
efforts revealed the relative ease of implementing the ABI proposal
both internally and externally to an existing implementation. They
also exposed non-portable assumptions in various MPI test suites.

3 CURRENT ABI DESIGNS
There are multiple aspects to an MPI ABI. Here are a few:

(1) The integral types of MPI_Aint, MPI_Offset, and MPI_Count.
(2) The MPI_Status object. This is a C struct with three stan-

dard members as well as hidden fields used by the implemen-
tation.

(3) Opaque handles such as MPI_Comm. Implementations can
define these to be anything that satisfies the required prop-
erties.

(4) Callback functions, e.g., MPI_User_function. These call-
back functions usually do not allow registering any data
with the function pointers, which is a challenge to intercept-
ing and forwarding registered functions.

(5) Values for both integer and handle constants, as well as pre-
defined callbacks. Some of these are arbitrary, while others
must be chosen carefully.

MPI 4.0 requires that most constants be usable in C for initial-
ization and assignments, but not case statements, which means
they need not be compile-time constants. Fortran requires they
be compile-time constants, which constrains the C ABI when con-
stants are the same in both languages. Buffer address constants
cannot be used for initialization/assignment, while string length
constants must be suitable as sizes in array declarations.

MPICH [10] has elected to provide compile-time constants, which
is necessary on some operating systems that do not support link-
time constants, and works in both C and Fortran. Open-MPI [13]
does not have compile-time constant predefined handles in C, and
has an indirection table from Fortran integer handles to the C ones.
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3.1 MPI integer types
The types MPI_Aint and MPI_Offset are used to store addresses
and file offsets, respectively. MPI_Count was added in MPI-3 for
the large-count effort, and this type is required to hold values
of MPI_Aint and MPI_Offset, so it is at least as large as these.
MPI_Aint is somewhat challenging since it must hold both absolute
addresses and relative displacements of pointers, so it is similar to
(u)intptr_t and ptrdiff_t fromC.However, because it must also
work in Fortran as INTEGER(KIND=MPI_ADDRESS_KIND), it must be
treated as if it is signed (because Fortran does not support unsigned
integers). Another complication is that pointers, addresses, and
differences of pointers may not always be the same size. In the past,
segmented addressing meant that addresses could be larger than
pointers, whereas there are now platforms where the reverse is
true, and MPI_Aint must be able to hold a pointer [21] to support
struct datatypes, for example.

3.2 The status object
This section describes multiple implementations of the MPI_Status
object and their history.

3.2.1 New MPICH (MPICH ABI Initiative). Below is the status ob-
ject in MPICH, which was made consistent with Intel MPI, in order
to establish the MPICH ABI initiative. This meant that applications
and libraries compiled against Intel MPI could be run using many
implementations.
t y p ed e f s t r u c t MPI_Status {

i n t count_lo ;
i n t count_hi_and_cancelled ;
i n t MPI_SOURCE ;
i n t MPI_TAG ;
i n t MPI_ERROR ;

} MPI_Status ;

3.2.2 OldMPICH. Prior to being consistent with Intel MPI, MPICH
had the following status object. This definition included unused
fields as a hedge against future needs, but also allowed for platform-
specific fields, which meant that MPICH builds on different plat-
forms could be ABI-incompatible.
. . .
t y p ed e f s t r u c t MPI_Status {

i n t MPI_SOURCE ;
i n t MPI_TAG ;
i n t MPI_ERROR ;
MPI_Count count ;
i n t cancelled ;
i n t abi_slush_fund [ 2 ] ;
@EXTRA_STATUS_DECL@

} MPI_Status ;

3.2.3 OpenMPI. The status object from recent versions of OpenMPI
is shown below. The status used by Wi4MPI has the same layout.
t y p ed e f s t r u c t ompi_status_public_t MPI_Status ;
s t r u c t ompi_status_public_t {

i n t MPI_SOURCE ;
i n t MPI_TAG ;
i n t MPI_ERROR ;
i n t _cancelled ;
size_t _ucount ;

} ;

3.2.4 MPItrampoline. MPItrampoline defines a status object that
holds the three public fields as well as a union of structs equivalent
to the status objects of MPICH and Open MPI.

This definition is not space efficient but convenient for convert-
ing between the trampoline definition and the underlying imple-
mentation one, although it stores the public fields redundantly.

We see here that all variants have the required fields, MPI_SOURCE,
MPI_TAG and MPI_ERROR, and the old MPICH ABI matched the
Open MPI ABI in having both at least one bit for the canceled state
plus a count field that supports at least 63 bit values. The question
for ABI standardization is what sort of hidden fields may need to
exist in the future, since there is little to no slack space to add new
fields in the current implementations.

3.3 MPI handle types
MPI datatypes are opaque objects although the constraints on them
limit the implementation choices. The MPI standard requires that
opaque objects can be compared for equality and inequality. For the
C language, this means that they need to have a built-in type, which
reasonably only allows integer and pointer types, and excludes
union and struct types.

The other important constraint on handles is related to attributes:
“Attributes in C are of type void* [. . . ] Attributes are scalar values,
equal in size to, or larger than a C-language pointer. Attributes can
always hold an MPI handle.” Because MPI handles must be able to
be held in a type void*, they cannot be larger than a pointer.

Since Fortran only supports signed integers, and older versions
of C provide a limited set of integer types, one can expect imple-
mentations to use a 32-bit integer, a 64-bit integer, or a pointer for
handles, although an 8- or 16-bit integer would be permitted.We see
that MPICH uses a C int (32-bits on all supported platforms) and
Open MPI uses incomplete struct pointers. The utility of incom-
plete struct pointers is that they allow for compiler type-checking.
That is, MPI_Comm and MPI_Group, for example, are recognizable as
different types and the compiler can issue warnings about invalid
handle arguments. On the other hand, the MPICH design allows
for zero-overhead conversion between C and Fortran, as well as the
encoding of information in the handle values themselves. OpenMPI
does not utilize this capability since handles to C objects are not
compile-time constants.

Below are some of the MPICH datatype handles, which reveal
how information is encoded within them:
t y p ed e f i n t MPI_Datatype ;
# d e f i n e MPI_CHAR ( ( MPI_Datatype ) 0 x4c000101 )
# d e f i n e MPI_SHORT ( ( MPI_Datatype ) 0 x4c000203 )
# d e f i n e MPI_INT ( ( MPI_Datatype ) 0 x4c000405 )
# d e f i n e MPI_LONG ( ( MPI_Datatype ) 0 x4c000807 )
# d e f i n e MPI_FLOAT ( ( MPI_Datatype ) 0 x4c00040a )
# d e f i n e MPI_DOUBLE ( ( MPI_Datatype ) 0 x4c00080b )

These handles encode the size of built-in datatypes that can be
queried trivially with this macro:
# d e f i n e MP IR_Da t a t ype_ge t _b a s i c _ s i z e ( a ) ( ( ( a ) &0 x 0 0 0 0 f f 0 0 ) > >8)

There are other macros that take advantage of the hidden struc-
ture of the MPI_Datatype handle that the reader can study in
mpir_datatype.h.

Open MPI’s mpi.h defines the datatype handle to be a pointer
to an incomplete struct, which is resolved externally at link-time.
The definition of the structure is only visible when building the
MPI library itself; otherwise, the compiler only knows its name.
This means that the data pointed to by a handle need not be the
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same at runtime, because the MPI application or library does not
depend on it.
# d e f i n e OMPI_PREDEFINED_GLOBAL ( type , g l o b a l ) ( ( type ) ( ( vo id ∗ ) &( g l o b a l ) ) )
. . .
t y p ed e f s t r u c t ompi_datatype_t ∗ MPI_Datatype ;
. . .
# d e f i n e MPI_CHAR OMPI_PREDEFINED_GLOBAL ( MPI_Datatype , ompi_mpi_char )
# d e f i n e MPI_DOUBLE OMPI_PREDEFINED_GLOBAL ( MPI_Datatype , ompi_mpi_double )
. . .
e x t e r n s t r u c t ompi_predefined_datatype_t ompi_mpi_char ;
e x t e r n s t r u c t ompi_predefined_datatype_t ompi_mpi_double ;

The runtime cost of querying handles is different in Open MPI
relative to MPICH. Open MPI has to look up the size of the datatype
inside of a 352-byte struct, which is not a concerning overhead
since the type of MPI code that will notice such an overhead is
going to pass the same datatype over and over, in which case the
CPU is going to cache and correctly branch-predict the lookup and
associated use every time.
s t a t i c inline int32_t

opal_datatype_type_size ( c on s t opal_datatype_t ∗ pData , size_t ∗ size ) {
∗ size = pData −>size ;
r e t u r n 0 ;

}

Wi4MPI defines all the opaque handles to be size_t. This en-
sures they are at least as large asMPICH’s int handles andOpenMPI’s
pointer handles on most platforms (technically, intptr_t must be
used for this to be strictly true but the exceptions are obscure [43]).

Wi4MPI defines the built-in datatypes to be sequential integers,
which means they are not attempting to encode useful information
the way MPICH do, although they are compile-time constants,
unlike Open MPI.
/ ∗ C da t a t y p e s ∗ /
# d e f i n e MPI_DATATYPE_NULL 0
# d e f i n e MPI_BYTE 1
# d e f i n e MPI_PACKED 2
# d e f i n e MPI_CHAR 3
# d e f i n e MPI_SHORT 4
# d e f i n e MPI_INT 5
# d e f i n e MPI_LONG 6
# d e f i n e MPI_FLOAT 7
# d e f i n e MPI_DOUBLE 8

MPItrampoline uses uintptr_t internally in its ABI, and incom-
plete struct pointers in its public API for type safety:
t y p ed e f s t r u c t MPItrampoline_Comm ∗ MPI_Comm ;
t y p ed e f s t r u c t MPItrampoline_Datatype ∗ MPI_Datatype ;

Analysis. There are advantages to both approaches. MPICH op-
timizes for the common case of built-in types, and does a lookup
for others, while Open MPI always performs a pointer lookup, but
then has what it needs in both cases.

The other advantage of the MPICH approach is with Fortran.
In Fortran, handles are INTEGER or a type with a single member
that is an INTEGER. MPICH conversions between C and Fortran are
trivial. Open MPI has to maintain a lookup table to map Fortran
handles to C objects.

An advantage of the Open MPI approach of using pointer types
to represent opaque types is increased type safety. This enables
the compiler to flag type mismatches, e.g. an MPI_Comm and an
MPI_Datatype argument have accidentally been swapped.

3.4 Functions
Function prototypes in MPI follow naturally from the definitions
of their arguments, which are either opaque handles, MPI integer

types, or intrinsic language types. What is essential for ABI pur-
poses is that the calling convention be fixed. This can be done by
specifying the aforementioned types and defining the calling con-
vention to be “as if” compiled by the platform C compiler. In most
cases, all of the C compilers on a given platform share a calling
convention but there are at least historical cases where this was not
true. As long as the MPI library uses the platform C compiler calling
convention, it will be compatible with libraries and applications
built with it, or another compatible compiler.

4 ECOSYSTEM IMPACT
One of the main motivations for an ABI is the ability to simplify
the end user’s life, thus improving the usability of the various
MPI implementation through standardization. In this section, we
detail particular points of interest for the community which would
directly benefit from the availability of an ABI.

4.1 Python
The Python language provides MPI bindings through the mpi4py
package [9]. mpi4py uses Cython [2], a super-set of the Python
language with C extensions. The Cython compiler generates C
code calling into the Python C-API and the MPI C-API. The wrap-
per C code has to be compiled and linked against a specific MPI
implementation to generate a Python extension module.

The lack of a standardized MPI ABI presents several drawbacks.
The mpi4py testing infrastructure built on publicly available ser-
vices like GitHub Actions and Azure Pipelines requires adding
both MPICH and Open MPI to the build matrix, effectively du-
plicating the required resources for running continuous integra-
tion. The mpi4py maintainers cannot distribute pre-built binary
Pythonwheels via the Python Package Index, effectively forcing end
users to set up a working C and Python development environment
and build mpi4py from a sources distribution. The conda-forge [8]
project somewhat alleviates these issues by featuring the conda
package manager and its ability to install different variants of pre-
built binaries in user-defined non-system locations. Nonetheless,
the lack of a standardized MPI ABI prevents conda-forge binaries
from using MPI implementations that are not ABI-compatible with
either MPICH or Open MPI. In addition, conda-forge also suffers
from the doubling of required resources to generate binaries for
every downstream application or library using MPI.

A standardized MPI ABI would allow mpi4py to explore alter-
native implementations based on the runtime loading of dynam-
ic/shared libraries and C foreign function interface (FFI) mech-
anisms. Such an approach would circumvent the generation of
platform-specific binaries, allowing any pure Python code to access
the MPI library and its features in a platform-agnostic way.

4.2 Julia
The Julia language provides MPI bindings through the MPI.jl pack-
age [5]. Unlike Python, Julia does not make use of a C compiler
to call into external libraries. Instead, the user provides the corre-
sponding types to the function signature to the ccall command.
To support this, the developers of MPI.jl had to (a) define the con-
stants and type definitions for each MPI ABI, (b) develop heuristics
to detect which ABI a particular MPI library is using, and (c) provide
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a mechanism to switch between the ABI definitions, invalidating
Julia’s cache of pre-compiled code. This code has been a significant
source of issues, hampering its usability and requiring significant
engineering effort on the part of its volunteer maintainers.

A key benefit of a standardized ABI will be making it easier to
provide downstream binaries. The Julia package manager provides
prebuilt binaries of many MPI-enabled libraries, such as ADIOS2,
HYPRE, P4est, and PETSc, but the support is rather cumbersome,
especially when users wish to use non-bundled MPI implementa-
tions. The ABI would boost usability, especially for the long-tail of
users on lower-end systems.

4.3 Rust
The Rust programming language provides MPI bindings through
the libraries in the rsmpi project [38]. rsmpi combines a thin static
library that re-exports underspecified identifiers (providing sym-
bols where MPI implementations are allowed to use macros) and
uses bindgen to create the raw Rust interface. bindgen relies on
libclang to parse the header (of the thin library and mpi.h) to
generate Rust bindings that conform to the C ABI of the MPI im-
plementation at hand. This approach works for any compliant MPI
and does not require tedious definition or maintenance of stubs.
The disadvantages are many and include long initial compilation
times due to having to fetch and build the dozens of dependencies
of bindgen, a need for pre-installed libclang, long testing times
by building against multiple different MPI implementations, and
need for users to rebuild to pick a different MPI implementation.

Rust is known for reliable package management and tooling for
binary distribution, including cross-compilation (across OS and
ISA). A standardized MPI ABI would allow rsmpi to provide a thin
and stable Rust binding that can be built without any dependencies
and simply links against a dynamic library on the target platform.
For example, a single CI/CD job for an application could publish
binaries for MacOS (x86-64 and ARM), Android, Windows, and
Linux (x86-64, POWER, and ARM) without needing to think about
MPI idiosyncrasies. ABI stability would make it easier to support
more MPI features and would also enable low-level idiomatic Rust
features that improve safety and static analysis for C FFI bindings,
but that are hard to incorporate into the current bindgen approach.

4.4 Fortran
Currently, all implementations of MPI Fortran wrappers are inte-
grated with MPI implementations. Vapaa [20] is the first attempt to
write the MPI Fortran 2008 interface as a standalone project, based
on calling the C interface, without any use of the internal state.
Because Fortran constants must be compile-time constants, not just
link-time constants, when Open MPI is used, Fortran interfaces
must define their own set of constants and translate them to the C
ones at runtime. Furthermore, to handle status objects, the status
ABI must be known. Thus, Vapaa ends up implementing its own
ABI and translating all constants and status objects. A standard
ABI would simplify the translation process and eliminate the need
for implementation-specific status handling. If the Fortran 2008
interface had the type of MPI_VAL equivalent to handle types in
C, then no translation would be necessary. However, this would

be both an ABI and an API change for mpi_f08.mod; it also offers
nothing to users of older MPI Fortran interfaces.

In addition, due to differences in name mangling among Fortran
compilers, running a Fortran program that calls MPI functions in-
side a container can result in linker dependencies that are not fixed
and depend on the specific Fortranmodule and compiler convention
used. This prevents an MPI Fortran program from having its MPI
implementation replaced through interposition (i.e., LD_PRELOAD).
Having an external Fortran implementation that relies on the ABI
would enable the static linking of the Fortran adaptation layer in
the target binary, abstracting away from these language-dependent
variations and restoring ABI compatibility.

4.5 Packaging
The availability of an ABI is highly important for packaging MPI
applications. MPI is a fundamental package for most scientific soft-
ware. However, there are several libraries that provide MPI support,
including vendor-specific ones. Therefore, building a binary for
MPI can become cumbersome when managing a long chain of
dependencies between packages, resulting in repetitive building.
While the ABI alone is insufficient to solve packaging dependency
issues, it is a significant step in the right direction.When running an
executable, the loader is responsible for locating various dynamic
shared objects (DSOs) to fulfill execution dependencies, based on the
system’s configuration and environment (e.g., LD_LIBRARY_PATH
and search paths). Thus, the ABI alone has no impact on the load-
ing of libraries when running a program. Nonetheless, it is still a
crucial step towards achieving drop-in replacement for MPI, which
involves changing the MPI of a given binary. This goal can be at-
tained by defining a common library naming scheme or developing
specific stub libraries in charge of bridging implementations – the
binary being linked to the stubs.

Linux package managers such as APT and RPM ship binaries
for two dependency chains, with packages like hdf5-openmpi and
hdf5-mpich. APTmanages these through the /etc/alternatives
mechanism while RPM (Fedora) deliberately rejects that usage due
to their rule [12]: “If a non-root user would gain value by switching
between the variants then alternatives MUST NOT be used.” As
such, Debian/Ubuntu users developing code that depends on an
MPI-enabled HDF5 can have a default implementation (that might
change unexpectedly at the whims of their sysadmin) while Fedo-
ra/RedHat usersmust use verbose paths unlikely to be found by con-
figure scripts. In this example, Arch Linux provides hdf5-openmpi
in the default repository (binary distribution) while hdf5-mpich
(and mpich itself) are in the user repository that must be installed
from source. Homebrew provides only hdf5-mpi, which uses Open
MPI. This complexity requires maintenance and communication to
users, increases testing time and frequency of bugs, and harms re-
producibility. With an ABI, there could be one hdf5-mpi and let the
mpiexec or ldconfig/LD_LIBRARY_PATH (since these distributions
eschew RPATH) determine which MPI to execute with.

A possibility to retarget binaries would be changing embed-
ded RPATHs inside the executable. Spack [14], which relies exten-
sively on RPATHs has implemented such rewriting techniques [44]
when deploying binary packages to systems, relocating the RPATHs
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through carefully planned compilation and clever rewriting tech-
niques. This approach was required as the end-user may have de-
ployed his spack tree at a different location from where it was
initially compiled. By doing so, Spack then manages to restructure
complex dependency chains, it is a process analogous to what would
be required to change the runtime of a given MPI-enabled binary.
The Anaconda [27] software distribution and its conda package
manager also rely on RPATH rewriting to allow binary relocation.

4.6 Testing
The advantage of the ABI support for testing is less direct. Indeed,
when running a program with a given MPI, the MPI is also part
of the equation to be validated. Gains could be envisioned in the
building of the test cases but it is not obvious that MPI implemen-
tation will be directly interoperable even in the event of a unified
ABI. Indeed, as for packaging, the build chain for MPI involves com-
piler wrappers and implementations are free to choose the name
of the MPI Dynamic Shared Object (DSO) – preventing drop-in
replacement of MPI. Overall, for testing, the ability to retarget MPI
programs to another implementation requires more than an ABI
but either a clearly defined object layout for MPI or a dedicated
redirection layer similar to what is provided in “trampoline” inter-
faces [30, 35]. Analogous dependencies on the naming of the DSO
are also present for containers as discussed in the next section.

4.7 Containers
Containers are an abstraction built on Linux namespaces. Contain-
ers are the systematic use of such namespaces to run “software
images” in a custom environment. The main advantage of contain-
ers is the ability to move images around systems to avoid recreating
complex software environments. In HPC networks, it is common to
use OS bypass techniques to optimize network performance. This
involves creating a separate networking layer that operates inde-
pendently of the operating system, allowing for faster and more
efficient communication between nodes. As a result, the network-
ing namespace (IP bound) is not commonly used in HPC networks
which prefer faster fabrics than TCP/IP. Similarly, to prevent secu-
rity issues such as privilege escalation, the user namespace, which
allows mimicking root behavior inside the container, is not used for
containers in non-virtualized environments[7]. Overall, the names-
pace leveraged by HPC container runtimes such as Singularity and
Shifter is the mount namespace.

Using the mount namespace, it is possible to change the mount
point seen by the running program. In HPC, the user’s home is
often bind-mounted inside the container, stacking the container’s
view of the file system atop of the preexisting shared one. With a
containerized program compiled against MPI, the corresponding
MPI is likely present in the container image. This MPI has to be
compatible with a wide range of interconnects, unlike the host MPI
from the system, since it cannot anticipate its target environment.
While this can be mitigated with communication libraries such
as libfabric[16], which manage to unify high-speed network inter-
faces, there may be features that are not possible outside of the
native MPI environment, perhaps because they are proprietary and
not generally available, or because they require system awareness

(e.g., network topology information) that cannot be included in the
widely distributed implementations of MPI.

On this aspect, using the hostMPI (as opposed to a containerMPI)
would allow the guest binary to take advantage of all the custom
features of the system. It also obviates the need for application
containers to redistribute MPI at all. For this purpose, approaches
such as e4s-cl [37] recursively locate all dependencies of MPI
and inject them into the container. The target binary may depend
indirectly on libraries such as hwloc that are required byMPI. There
are ways to mitigate this issue, like embedding all dependencies
or using symbol versioning for standard HPC libraries to reduce
possibilities for symbol conflicts. Another method is to ensure that
MPI-shared libraries do not cause transitive dependencies so that
the binary only requires MPI, and the MPI implementation takes
care of its dependencies directly. A second challenge faced by the
MPI container is launching the application. Indeed, MPI is in many
cases relying on the Process Management Interface (PMI) to wire
up its processes, which also has to be mapped into the container.
There have been studies on this point as part of a complete rework
of this interface in the PMIx standard [6] enabling PMI portability.

To summarize, containers need support fromMPI to allow binary
retargeting, i.e., the ability to change the MPI implementation on a
binary compiled against another MPI implementation. Note that
changing the guest MPI to the host MPI also allows PMI disam-
biguation – removing complexity on the launch side. Having an
ABI is compulsory as retargeting does not allow recompilation of
the application. This last point is the main blocker for accepting
and distributing MPI containers.

4.8 Performance and Debugging Tools
MPI tools often use the profiling interface (PMPI) to intercept func-
tion calls and extract the current state of MPI and to time operations,
for performance and debugging purposes [25, 28] . Since this inter-
ception operates on the compiled library code, all MPI tools must
be compiled against the relevant implementation ABIs. A standard
ABI makes it possible for PMPI interposition tools to be compiled
only once and reused with different MPI implementations.

The Tools working group in the MPI Forum is working on the
QMPI interface [11]. This interface is designed to support multi-
instrumentation, mimicking what has been previously pioneered
with 𝑃𝑛𝑀𝑃𝐼 [36]. As with PMPI, the absence of a standard ABI re-
quires each QMPI tool to be compiled for every ABI, and potentially
more, if any of these tools modify ABI-related properties of the
interface. One of the advantages of the proposed status object for
the standard ABI is that it has additional space that allows tools to
hide state in the reserved fields. Managing this in a layered context
is complicated and is left as an exercise for the implementers of
such tools.

5 PROPOSAL
This section outlines the current proposal for the MPI standard
ABI, based upon detailed analysis of requirements from MPI as
well as the behavior of platforms MPI should support. Following
Section 3, the ABI proposal defines MPI integer types, the status
object, opaque handles, and constant values. The calling convention
must be equivalent to the platform C compiler.
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5.1 MPI integer types
The purpose of MPI_Aint is to hold addresses or pointers, whichever
is larger, because its usage requires both. It should also be signed
because Fortran does not support unsigned integers. The only stan-
dard C type that meets this requirement is intptr_t. It is necessary
to use this integer type on platforms with so-called “wide pointers”
[43], although this situation is rare. There is no C integer type asso-
ciated with filesystem offsets, but all modern systems should use at
least 64-bit integers. There are some platforms where the underly-
ing filesystem offset may be 128-bits, but there is no need for MPI
to define MPI_Offset this way since MPI files greater than 8 EiB
are unlikely.2 Additionally, 128-bit integers are not implemented
natively on most systems and thus may perform poorly, so it is
undesirable to force the use of 128-bit integers for offset and count
to support impossibly large files. On the other hand, most systems
with 32-bit addressing have 64-bit filesystems, so there are at least
some scenarios where the MPI ABI should be flexible enough to
support different sizes of address and offset types.

To ensure all relevant target platforms can be supported, the
MPI ABI should be described in terms of the size of MPI_Aint
and MPI_Offset, while MPI_Countmatches the larger of these two
(which will be MPI_Offset on most systems). The integer sizes
of the MPI ABI can be denoted A𝑛AddressO𝑛Offset, to denote the
number of bits in the MPI_Aint and MPI_Offset types, respec-
tively. This is similar to how platform ABIs are described using
I𝑛𝑖L𝑛𝑙LL𝑛𝑙𝑙P𝑛𝑝 notation, to denote the size of C int, long, long
long, and void*, respectively. For example, modern Linux plat-
forms are described as LP64, meaning that long and void* are
64-bit. Today, essentially all MPI ABIs are A32O64 or A64O64 ABIs,
because we have 32- or 64-bit addresses, but most filesystems are 64-
bit. An A64O128 ABI is possible, although, for the aforementioned
reasons, it is neither necessary nor desirable.

The potential for more than one MPI ABI on a given platform is
undesirable. Current trends in filesystem technology suggest that a
MPI_Offset larger than 64 bits will not be necessary for at least 20
years. For these reasons, we propose to prescribe the MPI ABI for
platforms with 32- and 64-bit pointers as follows:

t y p ed e f intptr_t MPI_Aint ;
t y p ed e f int64_t MPI_Offset ;
t y p ed e f int64_t MPI_Count ;

This ABI definition covers essentially all relevant platforms since
the introduction of LFS [1] until the availability of filesystems far in
excess of 8 exabibytes. These types are part of C99 and C++11 but
implementations can use older equivalents for compiler portability.

One may observe that intptr_t is optional in C and, in the-
ory, a system may lack an integer type capable of satisfying its
requirements. This is uncommon, and exists to accommodate sys-
tems with 128-bit pointers but where supporting intptr_t would
force a change in intmax_t, which would be a breaking change in
the platform ABI [17]. We note that MPICH requires intptr_t and
platforms that do not provide it are not supported, so a reasonable
portion of the MPI ecosystem is unconcerned with this situation.

2At current prices of $10/TB, one such file would require more than $90M in filesystem
hardware.

While we have considered the case of 128-bit pointers, the cur-
rent proposal will only include A32O64 and A64O64. It is appro-
priate for the MPI community to gain more experience with such
platforms before attempting to standardize for them. For example,
while CHERI [42] has 128-bit pointers but doesn’t necessarily re-
quire 128-bit file offsets, but if MPI_Aint and therefore MPI_Count
have to be 128b, it might be prudent to make offsets the same width,
so that there is only one MPI ABI for all 128-bit platforms.

The one MPI integer that cannot be prescribed like the others is
MPI_Fint, since this corresponds to Fortran INTEGER, which is not
fixed, but varies as a function of Fortran compiler flags. It seems ap-
propriate to have a runtime query to allow C code to know the size
of a Fortran integer and work with it appropriately. This requires
code changes compared to the current situation where MPI_Fint
is known at compile-time, but the C code that relies on this is rare.
Alternatively, the standard ABI could force MPI_Fint to be a C int,
and disallow MPI Fortran interfaces from supporting larger integer
sizes. This would please Fortran purists who loathe the compiler
feature that allows changing the Fortran default integer size, but
displease users of existing implementations that support it.

5.2 The status object
The proposed standard status object is:
t y p ed e f s t r u c t MPI_Status {

i n t MPI_SOURCE ;
i n t MPI_TAG ;
i n t MPI_ERROR ;
i n t mpi_reserved [ 5 ] ;

} MPI_Status ;

This object is 32 bytes in size, which leads to good alignment
when arrays of statuses are used, and includes at least two extra
fields more than current implementations.

5.3 Handle types
In order to have type-safety in handles, incomplete struct pointers
are proposed; Open MPI has used this design and its properties are
well understood. The incomplete struct name will become part of
the ABI, so that compiler warning messages are clear:
t y p ed e f s t r u c t MPI_ABI_Comm ∗ MPI_Comm ;
t y p ed e f s t r u c t MPI_ABI_Request ∗ MPI_Request ;

5.4 Constants
Constants in MPI come in different forms. They include:

• Error codes, which start with MPI_SUCCESS=0.
• Buffer address constants, e.g., MPI_BOTTOM, which must have
special values distinguishable from user buffers.

• Handle constants.
• Integer constants that must have special values to avoid
conflicts; for example, MPI_ANY_SOURCE can never be a valid
rank, and thus should be a negative number.

• Integer constants that must be powers of two, to support
combination using XOR.

• Integer constants that correspond to string lengths.
• Integer constants that can have any value.
• Predefined attribute callback functions.

Some of the desirable properties brought forth by users and im-
plementers include a desire for unique integer constants, so that
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errors can be identified precisely. For example, if a user passes
MPI_ANY_TAG as a rank, this can be identified precisely if the con-
stant value is unique with respect to all other constants, especially
MPI_ANY_SOURCE. Another desirable property is the ability to en-
code information in handle constants, as MPICH does. For max-
imum portability, integer constants cannot be larger than 32767,
because that is the largest value of type int guaranteed by the
C standard. This constraint is strictly academic for the relevant
systems but there was no reason to violate it either.

For handle constants, the working group discussed designs with
and without unique values as well as the use of one or more lookup
tables versus a Huffman code. The current proposal uses a Huffman
code but is sufficiently compact so as to require a relatively small
lookup table, for implementations that choose to use one. The
Huffman code uses 10 bits and therefore fits into the zero page
of common operating systems; as a result, implementations that
allocate user handles from the heap need not verify that they do
not conflict with predefined constants.

As datatypes make up the majority of MPI’s predefined handles,
half of the Huffman code bits are reserved for datatypes, although
less than 100 values are used. The language, numerical properties,
and sizes of all fixed-size types are encoded in the handles. For exam-
ple, MPI_CHAR can be determined to be a 1-byte type immediately.
Unfortunately, MPI_INT is not a fixed-size type, so its size is not
encoded, as that would mean that the constant value was a function
of the platform ABI. While it would be possible for some use cases
to handle this, it is undesirable to force higher-level languages like
Julia to determine the platform ABI in order to use MPI.

Other handles can be decoded quickly using the bit pattern alone.
The value zero is always an invalid handle, which allows uninitial-
ized handles to be detected as errors instead of being confused as
legal null handles. Legal null handles use the non-zero bits of the
handle kind followed by zeros. The current Huffman code has a
sufficient amount of free space to allow for many new handle types
and new handle constants for existing types to be added, without
requiring breaking changes.

The values of integer constants for string lengths, e.g., MPI_MAX_-
LIBRARY_VERSION_STRING, and constants that can be combined
with XOR, e.g., MPI_MODE_NOCHECK, are not particularly interesting.
For the former, the largest known values used in existing implemen-
tations were chosen. There was some concern that stack allocation
of 8192 bytes could be a problem, but (1) nothing prevents users
from allocating such strings on the heap and (2) no issues with this
value (used by MPICH) have ever been reported.

The other integer constants are unique negative numbers, which
means that implementation can tell the user by name what constant
they passed, when the user passes an incorrect constant.

For simplicity, predefined attribute callbacks were set to 0x0
for MPI_XXX_NULL_COPY_FN and MPI_XXX_NULL_DELETE_FN, and
0xD for MPI_XXX_DUP_FN. Since compilers can detect incompatible
function pointer arguments there is little need to detect errors at
runtime.

The encoding of operation handles is provided in Appendix A.1.
The gaps in the ranges for the different operation types are inten-
tional since they provide room for future extensions. Moreover,
the modified Huffman encoding enables fast error checking by
implementations, simply by applying a bitmask.

Handles for opaque objects are encoded in a similar way, as
shown in Appendix A.2. The encoding leaves room for future exten-
sions for each handle type, making it possible to add new handles
without requiring special case handling.

Examples of datatype handles are provided in Appendix A.3.
Types with variable size (e.g., C int, float) are encoded with the
prefix 0b1000XXXXXX. Fixed-size types are encoded with the prefix
0b1001XXXXXX, with the size encoded in the lower bits at posi-
tion 4–6. For example, types with size 1 are encoded with pre-
fix 0b1001000XXX (e.g., MPI_BYTE with 0b1001000111; size 2000𝑏 )
while types with size 4 are encoded with prefix 0b1001010XXX (e.g.,
MPI_INT32_T with 0b1001010000 and size 2010𝑏 = 22).

The full definition of the Huffman code for handle constants can
be found in [18], while the other constants are listed in [19].

6 EXPERIMENTS
In this section, we present three experiments regarding the imple-
mentation of the standard ABI. First, we measure the performance
impact of different ABIs for querying the size of a type. Second, we
measure the message rate for MPICH-based implementations, with
and without standard ABI support. Third, we describe Mukautuva,
which demonstrates the feasibility of implementing the standard
ABI outside of any existing implementation. Finally, we mention
the effort required to implement the standard ABI in MPICH. For
both implementations – the one outside of an MPI implementation
and the one within MPICH – we see that the cost of ABI translation
is small.

6.1 Performance
Historically, there has been a performance argument in favor of
MPICH’s integer handles for datatypes because information like
type size is encoded directly in handles, whereas with Open MPI, it
must be fetched from the internal state. We measured the through-
put of MPI_Type_size to be be ≈ 11.5 nanoseconds with both
implementations on an AMD EPYC 7413 CPU. Not only is the
difference between the two implementations negligible, both are
negligible relative to the network cost of sending a single message,
which is at least 500 nanoseconds.

Table 1 shows the message rate determined by the OSU MPI
Benchmarks 7.0.1 for three different builds ofMPICH: the latest Intel
MPIand MPICH development versions built with UCX using the
MPICH ABI3 and the standard ABI prototype4 , with and without
Mukautuva. We see that adding the indirection from Mukautuva
has a noticeable impact, but it is likely acceptable as a worst-case
implementation of the standard ABI.

6.2 Mukautuva
Mukautuva [22] (“Adaptable” in Finnish) was created both as an
ABI compatibility layer and as a way to prototype the ABI proposal
being developed for the MPI Forum. It represents a worst-case
scenario implementation for the standard ABI, if implementers
refuse to support it.

Mukautuva (MUK) consists of two shared libraries. The first
library provides the MPI interface symbols. The second library is
3https://github.com/pmodels/mpich 0f72280c70214411e00e5c03e1f4111972fab4b7
4https://github.com/hzhou/mpich/tree/2302_abi 4ce7cd3b6c6a92e99090957ae1c4a9166efadedf
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Table 1: Message rate (8-byte messages) determined by
osu_mbw_mr on an Intel i7-1165G7 CPU running Linux 5.19.0
(Ubuntu 22.04). Build options unrelated to ABI – the shared-
memory performance of UCX versus OFI – have a significant
impact on message rate. The MPICH dev UCX results show
no difference between theMPICHABI and the proposed stan-
dard ABI.

MPI Messages/second
Intel MPI 2021.9.0 4658939.64
+ Mukautuva 4606473.95
MPICH dev UCX [1] 13643117.42
+ Mukautuva 12278837.03
MPICH dev UCX ABI [2] 13643378.98

1. –enable-error-checking=no –enable-fast=Os
–enable-g=none –with-device=ch4:ucx

2. Same as 1 plus –enable-mpi-abi

compiled against MPICH or Open MPI and provides the underlying
implementation (IMPL). Applications compiled against MUK are re-
lying on its ABI, which is a proxy for a future MPI standard ABI. At
runtime, the first shared library determines which implementation
will be used, and activates it via dlopen and dlsym. MPI symbols
call a wrapper layer with the MUK namespace. MUK symbols are
function pointers to the WRAP namespace in the implementation-
specific shared library. WRAP functions call the implementation,
with the appropriate conversion of handles and constants. An ex-
cerpt for the case of MPI_Comm_size follows.
libmuk . so :

t y p ed e f union {
vo id ∗ p ; / / Open−MPI
i n t i ; / / MPICH
intptr_t ip ;

} MUK_Handle ;
t y p ed e f MUK_Handle MPI_Comm ;

/ / du r ing i n i t i a l i z a t i o n
. . .
MUK_Comm_size = MUK_DLSYM ( wrap_so_handle , "WRAP_Comm_size " ) ; / / wraps dlsym ( )
. . .

i n t MPI_Comm_size ( MPI_Comm comm , i n t ∗ size ) {
r e t u r n MUK_Comm_size ( comm , size ) ;

}

impl−wrap . so :

# i n c l u d e <mpi . h> / / imp l emen ta t i on d e t a i l s

s t a t i c inline MPI_Comm CONVERT_MPI_Comm ( WRAP_Comm comm ) {
i f ( comm . ip == ( intptr_t ) MUK_COMM_WORLD ) { r e t u r n MPI_COMM_WORLD ; } e l s e
i f ( comm . ip == ( intptr_t ) MUK_COMM_SELF ) { r e t u r n MPI_COMM_SELF ; } e l s e
i f ( comm . ip == ( intptr_t ) MUK_COMM_NULL ) { r e t u r n MPI_COMM_NULL ; } e l s e
{

# i f d e f MPICH
r e t u r n comm . i ;

# e l i f OPEN_MPI
r e t u r n comm . p ;

# e l s e
# e r r o r NO ABI
# e n d i f

}
}

/ / s u c c e s s i s the common case , so s t a t i c i n l i n e i t .
i n t ERROR_CODE_IMPL_TO_MUK ( i n t error_c ) ;
s t a t i c inline i n t RETURN_CODE_IMPL_TO_MUK ( i n t error_c ) {

i f ( error_c == 0 ) r e t u r n 0 ;
r e t u r n ERROR_CODE_IMPL_TO_MUK ( error_c ) ;

}

i n t WRAP_Comm_size ( WRAP_Comm comm , i n t ∗ size ) {
MPI_Comm impl_comm = CONVERT_MPI_Comm ( comm ) ;
i n t rc = IMPL_Comm_size ( impl_comm , size ) ;
r e t u r n RETURN_CODE_IMPL_TO_MUK ( rc ) ;

}

The vast majority of MPI features can be translated from one
ABI to another with trivial overhead. The exceptions to this come
in two forms: first, when callbacks are involved, and second, when
vectors of handles are required. For callbacks, MUK must translate
to IMPL handles to call IMPL functions, but then translate IMPL
handles back to MUK handles, because the callback functions com-
piled as user code utilize the MUK ABI. The callback interfaces do
not always make this easy, but it can be done in all cases, using
methods described in the README.md. The situation with vector ar-
guments is similar to [23], where vectors of datatype handles must
be converted from one ABI to another, and freed upon completion,
which is tricky in the case of nonblocking alltoallw operations.
For these cases, like with callbacks, we use a map, currently imple-
mented with std::map from the C++ standard library, to associate
a temporary state with a handle. Callback function trampolines or
request completion operations lookup the temporary state asso-
ciated with handles when needed. The worst-case overhead will
arise when the user has initiated a nonblocking alltoallw oper-
ation, followed by a large number of nonblocking point-to-point
operations to be completed via MPI_Testall, for example. In this
case, every call to MPI_Testall will look up every request in the
map associated with nonblocking alltoallw operations. This is not
currently optimized, due to the low probability of such a scenario
in real applications.

During the development of MUK, we identified flaws in the early
ABI proposals as well as in MPI test suites. TheMPICH test suite, for
example, assumed the MPICH ABI in many places5, which meant
that it could not be used to test other implementations, or ABI
translation layers such as Wi4MPI, MPItrampoline, and MUK. Most
if not all of these issues have been resolved in the meantime.

MUK now passes all of the MPICH test suite tests except for a
handful that uses dynamic process management, which appears
to be related to environmental problems, yet to be investigated.
MUK also passes all tests associated with ARMCI-MPI, the Intel
MPI Benchmarks (IMB), and the OSU MPI Benchmarks (OMB). It
complies with MPI-4 except for sessions, which are expected to
suffer from the same issues observed in dynamic process manage-
ment functionality. Calling functions before initialization or after
finalization is not fully supported, and will be fixed in the future.

6.3 MPICH
While it has been demonstrated that the standard ABI can be im-
plemented without any change to existing implementations, doing
the translation inside of an MPI implementation has lower over-
heads. Hui Zhou has implemented support for the standard ABI
in MPICH [46]. The changes consist primarily of abstracting away
prior assumptions about the types of handles and callback signa-
tures and inserting the appropriate conversions, where necessary.
Most of the changes are in the interface code generator or guarded
by a preprocessor token, hence having no impact on execution time.

5e.g. https://github.com/pmodels/mpich/issues/6398
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The most expensive conversions are for datatype and reduce ops,
with a worst-case that requires 𝑂 (𝑁predefined) comparisons.

7 OTHER CONSIDERATIONS
A standard ABI is necessary but insufficient to provide seamless
compatibility of MPI software across implementations. For example,
MPI applications often require a parallel launcher, e.g., mpiexec,
which is not part of the ABI, but interacts with the MPI program in
non-standard ways, such as environment variables.

There are at least two solutions for portable launching. The
first is that the launcher determines the MPI shared library to be
used, in which case the launcher and the library will be compatible.
Another is the use of a launcher that is supported by multiple MPI
implementations, such as the ones provided by popular schedulers
like SLURM and PBS.

Applications also need to know what shared library to use. As
libmpi.so is used by a number of implementations already, the
name libmpi_abi.so is proposed for implementations of the stan-
dard ABI. Standardizing a new, descriptive name is especially im-
portant since it is expected that implementations will continue to
support their existing ABIs, using the existing library name(s). It is
expected that libmpi_abi.sowill follow the platform-specific con-
ventions for versioning to allow for future – hopefully backwards-
compatible – changes.

Obviously, much of the MPI ABI is contained in the header
file, mpi.h. The same filename will be used for the standard ABI,
to ensure source compatibility, but applications must use exactly
one ABI, and therefore every component of an application will
need to be compiled against the same header. We expect that the
standard ABI will be implemented in a header file provided by
the MPI Forum that can be used with any implementation that
supports the standard ABI, to ensure consistency in its definition.
Implementations can provide this header in a different path from
their own header, and perhaps help users with appropriate pkg-
config definitions or compiler wrapper scripts, e.g., mpi_abi.pc or
mpicc_abi, but these aspects of MPI are not standardized, nor are
they part of the ABI.

7.1 Fortran
This paper focused on a standard C ABI for MPI, but many codes
use MPI from Fortran. Fortran presents its own ABI challenges,
not the least of which is that INTEGER, used for MPI handles in
mpif.h and mpi.mod (and the MPI_VAL in typed handles defined
by mpi_f08.mod) varies in size depending on compiler flags. Fur-
thermore, each Fortran compiler has its own ABI and each has
their own runtime library, in contrast to C, where it is common
for C compilers to reuse the system C runtime, and thus be ABI
compatible (e.g., Intel and GCC on Linux).

The current ABI proposal for Fortran follows the C one; many
constants are required to be the same in both languages anyways.
While Fortran handles may be too small to hold the C handle values
in general, implementations can optimize for the case of predefined
handles because the C constants will be representable in Fortran
integers and do not require a translation table.

The overhead of translation for user-defined handles could be
achievedwith a new implementation of mpi_f08.mod, where MPI_VAL

is INTEGER(kind=c_intptr_t), although this is a breaking change
andwould require a newmodule, which could be called mpi_f08_abi.
One could also imagine a module mpi_abi that requires handles be
INTEGER(kind=c_intptr_t). No new MPI Fortran interfaces or
modules are currently proposed.

8 CONCLUSIONS
We have reviewed the current practices for MPI ABIs in the popular
implementations, MPICH and Open MPI, as well as ABI abstrac-
tion layers like Wi4MPI and MPItrampoline. The motivations for
standardizing an MPI ABI come from multiple sources, including
the packaging and distribution of MPI applications and libraries in
binary form, the use of MPI from languages other than C (or C++),
and the development of implementation-agnostic MPI performance
and debugging tools. The MPI ABI working group has developed a
proposal for a standard MPI ABI, which satisfies all of the require-
ments and relies only on ISO C language features. The standard
ABI has been prototyped in both MPICH and Mukautuva, and is
determined to be both practical and performant. We identified is-
sues with compatibility and portability not related to the ABI that
are expected to be solved by the MPI ecosystem.

The next steps for the proposed MPI ABI are (1) it must be
standardized by theMPI Forum, (2) it must be implemented either by
the major implementations and/or ABI abstraction layers. (3) users
of MPI must recompile against the standard ABI. Work towards 1
is underway, and this paper has provided sufficient evidence that 2
is either already done or straightforward.

We cannot predict the behavior of all MPI users, and certainly,
some may be reluctant, either because they expect the MPI standard
ABI to be less reliable than existing ABIs or that it will break in the
near future. There is obviously a large one-time cost of recompiling
everything against the MPI ABI, but it is no worse than the cost
of compiling everything against a new major release of Open MPI,
for example. Fortunately, there is no immediate need for users to
adopt the MPI ABI. It is expected that both MPICH and Open MPI
will support their existing ABIs for as long as users require them,
and will consider a translation to using the standard ABI natively
only after there is sufficient understanding of its use across a wide
range of platforms.

Regardless of how long it takes to realize the full potential of a
standard ABI, we expect that it will significantly reduce the pain
of using MPI in a variety of contexts, and encourage greater use of
MPI in new domains.
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A HANDLE ENCODING
This appendix presents inmore detail some implementation specifics
of the ABI with respect to operations, handles and datatypes. The
integer constants below are all in binary.

A.1 Operations
The encoding for handle types is provided below:
0 b0000000000 invalid ( uninitialized )
0 b00000 ∗ ∗ ∗ ∗ ∗ reserved handle

0 b0000100000 MPI_OP_NULL

/ / a r i t hm e t i c ops
0 b0000100001 MPI_OP_SUM

0 b0000100010 MPI_OP_MIN

0 b0000100011 MPI_OP_MAX

0 b0000100100 MPI_OP_PROD

0 b00001001 ∗ ∗ reserved arithmetic op

/ / b i n a ry ops
0 b0000101000 MPI_OP_BAND

0 b0000101001 MPI_OP_BOR

0 b0000101010 MPI_OP_BXOR

0 b000010 ∗ ∗ ∗ ∗ reserved bit op

/ / l o g i c a l ops
0 b0000110000 MPI_OP_LAND

0 b0000110001 MPI_OP_LOR

0 b0000110010 MPI_OP_LXOR

0 b000011 ∗ ∗ ∗ ∗ reserved logical op

/ / o t h e r ops
0 b0000111000 MPI_OP_MINLOC

0 b0000111001 MPI_OP_MAXLOC

0 b00001110 ∗ ∗ reserved other op

0 b0000111100 MPI_OP_REPLACE

0 b0000111101 MPI_NO_OP

0 b000011111 ∗ reserved other op

0b00 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ reserved handles

A.2 Other Handles
The encoding of opaque handles is shown below:
/ / communicator
0 b0100000000 MPI_COMM_NULL

0 b0100000001 MPI_COMM_WORLD

0 b0100000010 MPI_COMM_SELF

0 b0100000011 reserved comm

/ / group
0 b0100000100 MPI_GROUP_NULL

0 b0100000101 MPI_GROUP_EMPTY

0 b01000001 ∗ ∗ reserved group

/ / windows
0 b0100001000 MPI_WIN_NULL

0 b01000010 ∗ ∗ reserved win

/ / f i l e s
0 b0100001100 MPI_FILE_NULL

0 b01000011 ∗ ∗ reserved file

/ / s e s s i o n s
0 b0100010000 MPI_SESSION_NULL

0 b010001 ∗ ∗ ∗ ∗ reserved session

/ / messages
0 b0100010100 MPI_MESSAGE_NULL

0 b0100010101 MPI_MESSAGE_NO_PROC

0 b01000101 ∗ ∗ reserved message

/ / e r r o r hand l e r
0 b0100011000 MPI_ERRHANDLER_NULL

0 b0100011001 MPI_ERRORS_ARE_FATAL

0 b0100011010 MPI_ERRORS_RETURN

0 b0100011011 MPI_ERRORS_ABORT

0 b01000111 ∗ ∗ reserved handle

/ / r e q u e s t s
0 b0100100000 MPI_REQUEST_NULL

0 b01001000 ∗ ∗ reserved request

0b01 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ reserved handle

A.3 Datatypes
Examples for datatype handles are represented below:
0 b1000000000 MPI_DATATYPE_NULL

/ / v a r i a b l e − s i z e t ype s
0 b1000000001 MPI_AINT

0 b1000000010 MPI_COUNT

0 b1000000011 MPI_OFFSET

0 b10000001 ∗ ∗ reserved datatype

0 b1000000111 MPI_PACKED

0 b1000001000 MPI_SHORT

0 b1000001001 MPI_INT

0 b1000001010 MPI_LONG

0 b1000001011 MPI_LONG_LONG

0 b1000001100 MPI_UNSIGNED_SHORT

0 b1000001101 MPI_UNSIGNED_INT

0 b1000001110 MPI_UNSIGNED_LONG

0 b1000001111 MPI_UNSIGNED_LONG_LONG

0 b1000010000 MPI_FLOAT

. . .
/ / f i x e d − s i z e t ype s
0 b1001000000 MPI_INT8_T

0 b1001000001 MPI_UINT8_T

0 b1001000010 < f l o a t 8b>
0 b1001000011 MPI_CHAR

0 b1001000100 MPI_SIGNED_CHAR

0 b1001000101 MPI_UNSIGNED_CHAR

0 b1001000110 reserved datatype

0 b1001000111 MPI_BYTE

0 b1001001000 MPI_INT16_T

0 b1001001001 MPI_UINT16_T

0 b1001001010 < f l o a t 16b>
0 b1001001011 <C complex 2x8b>
0 b10010011 ∗ ∗ reserved datatype

0 b1001001111 <C++ complex 2x8b>
0 b1001010000 MPI_INT32_T

0 b1001010001 MPI_UINT32_T

0 b1001010010 <C f l o a t 32b>
0 b1001010011 <C complex 2x16b>
. . .
0 b1001011000 MPI_INT64_T

0 b1001011001 MPI_UINT64_T

0 b1001011010 <C float64 >
0 b1001011011 <C complex 2x32b>
. . .
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