
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Training warm-rain bulk microphysics schemes using1

super-droplet simulations2

Sajjad Azimi1, Anna Jaruga1, Emily de Jong2, Sylwester Arabas3, Tapio3

Schneider1,44

1Department of Environmental Science and Engineering, California Institute of Technology, Pasadena,5

CA, USA6
2Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA7

3Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland8
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA9

Key Points:10

• A calibration framework for warm-rain bulk microphysics parameterizations is pre-11

sented.12

• The framework relies on a library of super-droplet simulations of a rain shaft.13

• Calibrating a single-moment microphysics scheme with the calibration framework14

substantially reduces the model-data mismatch.15

Corresponding author: Sajjad Azimi, azimi@caltech.edu

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract16

Cloud microphysics is a critical aspect of the Earth’s climate system, which involves pro-17

cesses at the nano- and micrometer scales of droplets and ice particles. In climate mod-18

eling, cloud microphysics is commonly represented by bulk models, which contain sim-19

plified process rates that require calibration. This study presents a framework for cal-20

ibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that pro-21

vide a more accurate and physically based representation of cloud and precipitation pro-22

cesses. The calibration framework employs ensemble Kalman methods including ensem-23

ble Kalman inversion (EKI) and unscented Kalman inversion (UKI) to calibrate bulk mi-24

crophysics schemes with probabilistic super-droplet simulations. We demonstrate the frame-25

work’s effectiveness by calibrating a single-moment bulk scheme, resulting in a reduc-26

tion of data-model mismatch by more than 75% compared to the model with initial pa-27

rameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of28

bulk microphysics schemes in atmospheric models and improving climate modeling.29

Plain Language Summary30

Cloud microphysics is a complex set of processes that determine the formation and31

evolution of particles in clouds, which affects the Earth’s climate by regulating precip-32

itation and cloud cover. However, the vast difference in scale between the microphysics33

and large-scale atmospheric flows makes it impossible to simulate these processes in cli-34

mate models directly. Instead, climate models use simplified methods to represent cloud35

microphysics, which can result in inaccuracies. In this study, we focus on calibrating the36

simplified models with more detailed simulations of cloud microphysics using the super-37

droplet method. We demonstrate a framework for calibrating the simplified models us-38

ing high-fidelity simulations, which improves the accuracy of these models.39

1 Introduction40

Cloud microphysics refers to the microscale processes within clouds that control41

the formation and evolution of hydrometeors, such as cloud droplets, ice crystals, and42

raindrops. These processes are essential for regulating many mesoscale properties of clouds,43

such as precipitation and cloud albedo, which are important factors in the Earth’s cli-44

mate system. Despite the crucial role of cloud microphysics, climate models cannot re-45

solve these processes mainly due to the vast scale separation between the micro-scale dy-46

namics of hydrometeors and large-scale atmospheric flows. As a result, climate models47

commonly represent cloud microphysics by representing particle size distributions (PSD)48

of hydrometeors through bulk methods. Bulk methods track the evolution of aggregate49

properties of the PSD, such as the total mass or number of particles. While bulk schemes50

are the dominant numerical approach in climate modeling, they have significant uncer-51

tainty in both the structure of the model and the parameters (Khain et al., 2015; Mor-52

rison et al., 2019; Igel et al., 2022). However, the uncertainty in the parameters can be53

reduced through calibration against more detailed methods such as spectral bin meth-54

ods and particle-based super-droplet methods. In this paper, we will focus on calibrat-55

ing bulk methods with detailed results of the particle-based super-droplet method to im-56

prove the accuracy of climate models.57

While bulk methods have the advantage of reducing the computational cost of mi-58

crophysics modeling, their accuracy is challenged by several factors. First, bulk meth-59

ods follow the evolution of a few moments of the PSD, while many process rates depend60

on higher moments. Therefore, the bulk methods require closures that express higher61

moments in terms of the tracked moments. These closures are typically derived by as-62

suming specific functional forms for the size distribution, such as a gamma or exponen-63

tial distribution (e.g., Khairoutdinov & Kogan, 2000; Liu & Daum, 2004; Seifert & Be-64

heng, 2006; Morrison & Grabowski, 2007). However, in reality, the size distribution of65
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hydrometeors is multimodal. Consequently, bulk methods consider different particle cat-66

egories, such as cloud droplets and raindrops, each represented by different unimodal dis-67

tributions. The conversion rate between these categories is parameterized, leading to in-68

creased uncertainties in climate modeling. Furthermore, the use of multiple categories69

is an artificial representation of the real-world physics of hydrometeors, and the conver-70

sion rates may not be able to capture the collective physics of hydrometeors well. Sec-71

ond, parameterization models in bulk schemes typically include several process rate pa-72

rameters that need to be calibrated with reference physics, which can be observational73

data or high-fidelity numerical simulations. However, despite the abundance of satellite74

observations available, it remains challenging to leverage them effectively for the devel-75

opment of microphysics schemes due to the difficulties in accurately mapping from these76

observations to microphysical variables (Morrison et al., 2020).77

Despite their limitations, bulk methods are widely used in climate modeling due78

to their simplicity, motivating researchers to continually develop new parameterizations79

to improve their accuracy (e.g., Kessler, 1969; Tripoli & Cotton, 1980; Milbrandt & Yau,80

2005; Morrison & Milbrandt, 2015; Morrison et al., 2019). The complexity of bulk meth-81

ods varies depending on the number of prognostic moments they track. While most cloud82

microphysics schemes only describe one or two moments, higher-moment schemes are more83

accurate, albeit at increased computational costs. Regardless of the complexity of a new84

bulk parameterization idea, poorly estimated parameters can impact the performance85

of the entire modeling system. Therefore, careful attention must be given to this aspect86

of bulk method development to ensure that new parameterization ideas are effective and87

reliable. Several recent studies highlighted the application of Bayesian techniques in pa-88

rameter estimation for bulk microphysics schemes. Posselt and Vukicevic (2010) and Posselt89

(2016) employed a Markov chain Monte Carlo algorithm to investigate the relationship90

between cloud microphysical parameters and deep moist convection simulations. Morrison91

et al. (2019) and van Lier-Walqui et al. (2020) introduced the Bayesian observationally92

constrained statistical-physical scheme, a flexible framework designed to learn microphys-93

ical parameter distributions through Bayesian inference. Bieli et al. (2022) proposed a94

bulk microphysics scheme with adjustable complexity, and presented an efficient param-95

eter learning approach using the calibrate-emulate-sample algorithm (Dunbar et al., 2021).96

Notably, both of these studies demonstrated learning parameters of their bulk schemes97

by using perfect-model experiments with data generated by the same models.98

Access to microphysics observations for calibration and validation of bulk schemes99

is often limited, making high-fidelity simulations using detailed microphysics represen-100

tations a critical data source. Researchers have commonly used spectral bin methods to101

calibrate and evaluate bulk schemes (e.g., Khairoutdinov & Kogan, 2000; Kogan, 2013;102

Zeng & Li, 2020; Gettelman et al., 2021). However, bin methods can be susceptible to103

numerical diffusion, and - in the case of modeling coalescence - they inherit the limit-104

ing assumptions necessary to derive the underlying deterministic Smoluchowski equa-105

tions, both of which limit their accuracy (Grabowski et al., 2019). Another detailed method106

that has gained increasing attention in recent years is the particle-based super-droplet107

method (SDM) (Shima et al., 2009; Andrejczuk et al., 2010; Riechelmann et al., 2012).108

This method uses a probabilistic particle-based approach to track individual super-droplets109

explicitly and allows for a more realistic representation of the microphysics involved in110

cloud and precipitation processes. Each super-droplet is treated as an ensemble of ac-111

tual particles that share the same attributes, such as size, composition and location. SDM112

simulations are probabilistic because they involve random sampling of the attribute space113

at initialization and feature Monte-Carlo-type representation of stochastic processes such114

as coagulation and breakup. Each SDM simulation yields a single realization of the sys-115

tem evolution which includes tracking of each super-droplet’s properties through par-116

ticle processes such as aerosol activation, condensation, evaporation, collision, coalescence,117

and break-up. Unlike bulk schemes that require parameterizations of conversion rates118

between artificial categories, the SDM avoids such parameterizations, providing a more119
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accurate and physically based representation of cloud and precipitation processes. As120

such, the particle-based super-droplet approach has the potential to provide more real-121

istic and detailed data for improving the accuracy of bulk schemes in simulating cloud122

and precipitation processes. Noh et al. (2018) employed the particle-based super-droplet123

approach to evaluate several bulk parameterizations for collisional growth in shallow cu-124

mulus clouds. However, their study is limited to few simulations initialized with a sin-125

gle thermodynamic condition and excludes considerations of raindrop breakup and evap-126

oration.127

Here in this study, we present a framework for calibrating warm-rain bulk schemes128

using high-fidelity super-droplet simulations. We implement the one-dimensional kine-129

matic driver (KiD-1d) model, proposed by Shipway and Hill (2012), and generate a li-130

brary of super-droplet simulations in this model. The KiD-1d model is a one-dimensional131

warm rain shaft model with a prescribed flow field and constant temperature profile. The132

flow and temperature fields are prescribed to isolate microphysics processes from their133

feedbacks with dynamics and thermodynamics, enabling us to calibrate and validate mi-134

crophysics schemes dynamically consistently. This means that any variations in the re-135

sults can only be attributed to changes in microphysics schemes. We utilize ensemble136

Kalman methods, including ensemble Kalman inversion (EKI) (Iglesias et al., 2013) and137

unscented Kalman inversion (UKI) (Huang et al., 2022), to calibrate bulk microphysics138

schemes with the super-droplet simulations. EKI and UKI are ensemble-based gradient-139

free methods that have demonstrated remarkable success in a wide variety of calibration140

studies (e.g., Xiao et al., 2016; Kovachki & Stuart, 2019; Dunbar et al., 2022). EKI is141

more robust than UKI concerning noise in observations, while UKI provides parameter142

uncertainties and allows for model error quantification (Lopez-Gomez et al., 2022). We143

demonstrate the application of the calibration framework by calibrating a single-moment144

warm-rain bulk scheme, targeting parameters of conversion rates such as condensation,145

auto-conversion, accretion, sedimentation, and evaporation rates. Remarkably, calibra-146

tions using EKI and UKI obtain two different sets of optimal parameters, both result-147

ing in a similar reduction of model-data mismatch. The difference between these two pa-148

rameter sets is consistent with the parameter correlations obtained from UKI. Through149

our calibration process, we achieve a significant enhancement in the accuracy of the bulk150

model by more than 75% compared to the model with initial parameter values.151

The calibration framework presented here has several notable properties compared152

to previous studies. First, we employ the SDM as a tool capable of providing a physi-153

cally based representation of microphysics for generating benchmark simulations. Sec-154

ond, the framework offers an efficient setup to calibrate and evaluate bulk methods by155

using a diverse set of rain shaft simulations with a wide variety of precipitation condi-156

tions. Finally, by using ensemble Kalman methods, which are gradient-free, we ensure157

both efficient parameter learning and the ability to quantify parameter uncertainties and158

model error. The calibration framework presented in this study provides a promising tool159

for enhancing the accuracy of bulk microphysics schemes in atmospheric models, with160

potential implications for improving climate modeling.161

The manuscript is organized as follows: Section 2 provides an overview of the KiD-162

1d model, along with a discussion of the SDM used to generate simulations of the KiD-163

1d model. The section also describes the calibration methods employed in our framework164

for calibrating bulk schemes. In Section 3, we present a library of super-droplet simu-165

lations of the KiD-1d model and report the results of calibrating a single-moment bulk166

scheme using this library of rain shaft simulations. Finally, Section 4 summarizes our167

findings and provides an outlook for future research.168
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Table 1. Data points for interpolating the initial water vapor mixing ratio rv,0 and potential

temperature θ.

Height (m) rv,0 (kg kg−1) θ (K)

0 0.015 297.9
740 0.0138 297.9
3260 0.0024 312.66

2 Methods169

This section provides an overview of the methods employed in this study. We in-170

troduce the one-dimensional rain-shaft model, which serves as a testbed for calibrating171

and evaluating warm-rain bulk schemes in relation to high-fidelity particle-based sim-172

ulations. Subsequently, we discuss the SDM utilized to generate a comprehensive library173

of simulations for benchmarking bulk schemes. Next, we present a specific example of174

a single-moment warm-rain bulk scheme used to demonstrate the application of the cal-175

ibration framework. Lastly, we explain the calibration methods employed to refine and176

optimize the bulk scheme.177

2.1 System: One-dimensional kinematic driver model178

The calibration framework utilizes an implementation of the one-dimensional kine-179

matic driver (KiD-1d) model as a testbed for calibrating and evaluating warm-rain bulk180

schemes. The KiD-1d model is specifically designed to facilitate the assessment of mi-181

crophysics parameterizations by prescribing both the velocity and temperature fields (Shipway182

& Hill, 2012; Hill et al., 2023). This prescription effectively prevents any feedback from183

dynamics and thermodynamics on microphysics processes, ensuring that observed vari-184

ations in the results can be solely attributed to changes in microphysics parameteriza-185

tions. In the employed implementation of the KiD-1d model, we consider a stratified air186

density profile, and thus prescribe the flow by using an air momentum profile, unlike (Hill187

et al., 2023) where a constant density is used.188

The KiD-1d model represents shallow convection in a column of moist air within189

a height range of 3 km from the ground level. The prescribed flow field represents an up-190

draft, which is uniform in height z and sinusoidal in time t, as given by the equation:191

ρw(z, t) = (ρw)0 sin(πt/t1), 0 < t < t1. (1)

Here, ρ represents the dry-air density, w denotes the vertical velocity component, and192

(ρw)0 is the maximum updraft momentum. The parameter t1 represents the duration193

of the updraft. Beyond t1, there is no updraft, and ρw remains at 0. This updraft mo-194

tion lifts moist air to higher, colder levels, facilitating condensation of water vapor and195

cloud formation. The initial vapor mixing ratio rv,0 and the potential temperature θ are196

represented as piecewise linear profiles interpolated from data points provided in Table 1.197

The initial temperature profile T (z) at t = 0 is computed from the potential temper-198

ature θ(z) and is held constant throughout the simulations to eliminate any potential199

thermodynamics feedback on microphysics.200

2.2 Particle-based simulation method201

For generating a library of particle-based simulations of the KiD-1d model, we use202

the PySDM package (Bartman, Bulenok, et al., 2022; de Jong et al., 2023). PySDM is203

a Python-based code designed to run particle-based simulations of clouds and precip-204

itation using super-droplets. Each super-droplet corresponds to multiple particles shar-205
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ing the same properties, including location, size and composition. The multiplicity of a206

super-droplet indicates the number of actual particles it represents. For further details207

on the models employed in PySDM, refer to Bartman, Bulenok, et al. (2022) and de Jong208

et al. (2023).209

Because the particle-based simulations are inherently stochastic, we generate 100210

simulations for each configuration to determine the mean and variability of the results211

used for calibration purposes. In each simulation, we utilize an average of Nsd = 512212

super-droplets per grid box, with a grid spacing of dz = 50 m and a time step of dt =213

5 s for advection computations. The Python-based code PyMPDATA (Bartman, Banaśkiewicz,214

et al., 2022) is used for solving the advection equation. We study the independence of215

the results from the chosen numerical values by performing simulations with doubled Nsd,216

halved dz, and halved dt. The results from these simulations show excellent agreement217

with the original findings, indicating that the results are not influenced by the specific218

numerical values employed. (For more detailed information, see Appendix A.)219

2.3 Single-moment warm-rain bulk scheme220

To demonstrate the application of our calibration framework, we focus on calibrat-221

ing and evaluating a single-moment warm-rain bulk scheme. Specifically, we examine the222

single-moment bulk scheme implemented in CloudMicrophysics.jl, an open-source Ju-223

lia package developed and utilized within the CliMA project (clima.caltech.edu). This224

bulk scheme is based on the original concept introduced by Kessler (1969). It divides the225

total water content into three categories: water vapor, cloud water, and rainwater. The226

conversion of water vapor into cloud water occurs through condensation. The conver-227

sion of cloud water to rainwater involves two processes: auto-conversion, accounting for228

the collision and coalescence of droplets in the cloud phase to form raindrops, and ac-229

cretion, representing the collection of cloud droplets by raindrops. The sedimentation230

of raindrops causes them to descend to subsaturated regions, leading to the partial con-231

version of rainwater back into water vapor through evaporation.232

The auto-conversion rate is represented as the ratio of the specific content of cloud233

water to the auto-conversion time scale. This time scale is determined by a power-law234

function of the initial aerosol number density (Na). The auto-conversion rate is expressed235

as follows:236

∂qr
∂t

∣∣∣∣
acnv

= −∂qc
∂t

∣∣∣∣
acnv

=
qc

τacnv, 0
(

Na

100 cm−3

)αacnv
. (2)

In this equation, qc and qr represent the specific content of cloud and rainwater, respec-237

tively. The constant τacnv, 0 denotes the reference auto-conversion time scale, and αacnv238

represents the power law parameter of the number density.239

The process rate equations provided in the CloudMicrophysics.jl package are based240

on the following assumptions regarding the raindrop size distribution n, mass m, area241

a, and terminal velocity v as functions of the particle radius r:242

n(r) = n0 exp(−λr) (3)

m(r) = m0

(
r

r0

)3

(4)

a(r) = χaa0

(
r

r0

)2+∆a

(5)

v(r) = χv v0

(
r

r0

)1/2+∆v

, (6)

where r0 denotes the reference raindrop radius used for nondimensionalization. The val-243

ues of the reference raindrop mass m0, area a0, and terminal velocity v0 are calculated244
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as follows: m0 = (4/3)π ρw r30, a0 = π r20, and245

v0 =

(
8 (ρw/ρm − 1) g r0

3Cd

)1/2

. (7)

Here, ρw represents the density of water, ρm is the moist-air density, g denotes the ac-246

celeration due to gravity, and Cd is a constant drag coefficient. The coefficients χa, ∆a,247

χv, and ∆v are free parameters that can be adjusted during model calibration. The pa-248

rameters n0 and λ serve as distribution parameters. Integrating the mass of particles over249

the distribution, we obtain the following equation for λ:250

λ =

(
4π ρw n0 Γ(4)

3 qr ρm

) 1
4

, (8)

where Γ denotes the gamma function. The condensation of water vapor is modeled by251

relaxing the excess of water vapor towards the saturation specific humidity over the con-252

densation time scale:253

d qc
dt

∣∣∣∣
cond

=
qv − q∗v
τcond

, (9)

where qv represents the specific humidity, q∗v is the saturation specific humidity, and τcond254

represents the time scale of condensation. The accretion rate is obtained by integrating255

the rate of collection of cloud droplets by raindrops while falling at their terminal ve-256

locity over the assumed raindrop size distribution. It is expressed as follows:257

d qr
dt

∣∣∣∣
accr

= − d qc
dt

∣∣∣∣
accr

= n0 Πa,v qc Ecr Γ(Σa,v + 1)
1

λ

(
1

r0λ

)Σa,v

, (10)

where Πa,v = a0 v0 χa χv, and Σa,v = 5/2+∆a +∆v. Additionally, Ecr represents the258

collision efficiency between cloud droplets and raindrops. The sedimentation of rain is259

accounted for by the following equation, which describes the terminal velocity:260

vt = χv v0

(
1

r0 λ

)1/2+∆v Γ(9/2 + ∆v)

Γ(4)
. (11)

Finally, the rate of rain evaporation is modeled by integrating the evaporation of indi-261

vidual particles over the spectrum of raindrops. This leads to the following expression:262

dqr
dt

∣∣∣∣
evap

=
4πn0

ρm
(S − 1)G(T )λ−2

×

[
avent + bvent

(
νa
Dv

) 1
3
(

1

r0 λ

) ve+∆v
2

(
2χv v0
νa λ

) 1
2

Γ

(
11

4
+

∆v

2

)]
. (12)

In this equation, S = qv/q
∗
v represents the saturation, T denotes the temperature, Dv263

is the diffusivity of water vapor, νa is the kinematic viscosity of air, and avent and bvent264

are ventilation parameters. The function G(T ) is defined as:265

G(T ) =

(
L

k T

(
L

Rv T
− 1

)
+

Rv T

p∗v Dv

)−1

(13)

where L is the latent heat of vaporization, k is the thermal conductivity of air, Rv is the266

gas constant of water vapor, and p∗v represents the saturation vapor pressure.267

The single-moment bulk scheme considered in this study involves several notable268

simplifications. First, the functional form of the auto-conversion parameterization is straight-269

forward, representing it as the ratio of available cloud water to an auto-conversion time270

scale. Second, the scheme assumes that the distribution of raindrops follows an expo-271

nential distribution, characterized by a constant scaling parameter n0. Third, in the pa-272

rameterization of terminal velocity, a constant drag coefficient is employed, which is as-273

sumed to apply uniformly to all particles, while in reality, the drag coefficient is a func-274

tion of raindrop size. Finally, the scheme adopts a constant collision efficiency in the pa-275

rameterization of accretion rate. These simplifications, while enhancing computational276

efficiency, can affect the model’s performance.277

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 2. Parameters of the single-moment bulk scheme. The columns show parameter names,

brief descriptions, and prior values with references. The references are KM2003 (Korolev &

Mazin, 2003), GS1996 (Grabowski & Smolarkiewicz, 1996), and LD2004 (Liu & Daum, 2004),

MP1948 (Marshall & Palmer, 1948), and G1998 (Grabowski, 1998). Note that the values of avent

and bvent are selected to achieve a close agreement with the evaporation rate of GS1996 at a

specific humidity of 15 g/kg and T = 288 K. Additionally, the value of Cd is selected to closely

approximate the terminal velocity of GS1996.

Parameter name Description Value

τcond Condensation time scale 10 s, KM2003
τacnv, 0 Auto-conversion time scale 1000 s, GS1996
αacnv Auto-conversion coefficient 1, LD2004
χv Terminal velocity coefficient 1
∆v Terminal velocity coefficient 0
χa Accretion coefficient 1
∆a Accretion coefficient 0
avent Evaporation coefficient 1.5, GS1996
bvent Evaporation coefficient 0.53, GS1996
r0 Reference raindrop radius 10−3 m
n0 Size distribution parameter 16 · 106 m−4, MP1948
Cd Raindrop drag coefficient 0.55, GS1996
Ecr Collision efficiency 0.8, G1998

Table 2 provides a list of parameters of the single-moment bulk method, along with278

their prior values. We select a subset of the parameters for calibration, specifically fo-279

cusing on those that do not have easily definable physical values. These choices aim to280

comprise a set of parameters that uniquely govern auto-conversion, accretion, the ter-281

minal velocity of raindrops, and the rain evaporation rate. To ensure coverage of these282

processes, we selected one or two parameters from each process, each capable of signif-283

icantly modifying that specific process. Specifically, we select τcond to represent the con-284

densation process, τacnv 0 and αacnv for auto-conversion, χv and ∆v for raindrop termi-285

nal velocity, and χa and ∆a for accretion. Additionally, we include bvent to regulate the286

rate of evaporation. Other parameters of the model that are modulated by the calibrated287

parameters remain constant during model calibration.288

2.4 Algorithms for learning parameters289

The problem of learning parameters for the bulk method is formulated as an in-290

verse problem, represented by the equation291

y = H ◦ Ψ ◦ T −1(θ) + δ + η. (14)

Here, y represents the vector of observations, and θ represents the vector of learnable292

parameters, which are transformed into an unconstrained space θ ∈ Rp. The operator293

T is a transformation map that converts parameters ϕ from their constrained subspace294

(where they satisfy constraints such as positivity) to the unconstrained space, such that295

θ = T (ϕ). The mapping Ψ represents the dynamical model, while H denotes the ob-296

servational map incorporating necessary post-processing operations to generate model297

predictions aligned with the observations. For example, y may represent averaged spe-298

cific water content data from particle-based simulations, Ψ represents bulk scheme sim-299

ulation results, and H could involve spatial and temporal averaging. The observational300
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noise associated with the observations y is indicated by η, and the model error by δ. Both301

η and δ are assumed to follow a Gaussian distribution with zero mean.302

To ensure the generalizability of the calibrated model, we train it using multiple303

system configurations. We refer to the set of system configurations used for model train-304

ing as C. In this study, |C| = 49 configurations are used for the calibrations. The ob-305

servation vector y consists of observations obtained from all system configurations: y =306

[y1, y2, ..., y|C|]
T . For each system configuration, 100 SDM simulations are conducted, and307

the mean values of specific contents of cloud water, rainwater, and water vapor over in-308

tervals of 100 m and 10 min are extracted. The data are then normalized by dividing each309

field by the maximum of its standard deviation across the 100 simulations. Subsequently,310

the observation vector yc and the noise covariance Γc are computed for each configura-311

tion c using the normalized data obtained from the 100 SDM simulations.312

To calibrate the parameters of the bulk scheme using particle-based simulations,313

we employ two gradient-free algorithms available in the EnsembleKalmanProcesses.jl pack-314

age: ensemble Kalman inversion (EKI) (Iglesias et al., 2013) and unscented Kalman in-315

version (UKI) (Huang et al., 2022). These algorithms are derived from the extended Kalman316

filter and heavily rely on Gaussian conditioning. EKI utilizes an iterative procedure to317

search for the optimal parameter set (maximum likelihood estimator, MLE) by updat-318

ing an ensemble of J parameter sets with J ∼ p. For our calibrations, we choose J =319

20. The initial ensemble is formed by randomly sampling parameters from a Gaussian320

distribution. On the other hand, UKI adopts a deterministic approach to update an ini-321

tial Gaussian estimate represented by an ensemble of J = 2p+1 parameter sets, aim-322

ing to approximate the likelihood centered around the MLE. EKI shows greater robust-323

ness against observation noise than UKI, while UKI quantifies model error and estimates324

parameter uncertainties. For a detailed discussion on both algorithms, refer to Lopez-325

Gomez et al. (2022).326

Training the model involves minimizing the average configuration loss function that327

penalizes the mismatch between observations and model outputs. The average config-328

uration loss is given by329

L(θ; y) =
1

2|C|

|C|∑
c=1

||yc −Hc ◦ Ψc ◦ T −1(θ)||2Γc
, (15)

where ||.||Γc represents the Mahalanobis norm, with ||.||2Γc
= ⟨·,Γ−1

c ·⟩. Both EKI and330

UKI require evaluating the loss at each iteration, which involves running the model for331

all configurations. However, this can be computationally expensive. To address this, we332

employ mini-batches of configurations denoted as B ⊂ C to approximate the average333

configuration loss:334

L(θ; yB) =
1

2|B|
∑
c∈B

||yc −Hc ◦ Ψc ◦ T −1(θ)||2Γc
. (16)

Batching is a commonly used technique that helps prevent convergence to local minima335

and thus improves generalization (Li et al., 2014). For our study, we choose a batch size336

of |B| = 6 for running the calibrations. During model training, EKI and UKI receive337

data from a mini-batch of |B| configurations at each iteration. The mini-batches are ran-338

domly drawn without replacement from the set of training configurations C. An epoch339

corresponds to a complete cycle through all available configurations such that no other340

mini-batch can be composed of the remaining configurations. At the end of each epoch,341

the configurations are reshuffled. With |C| = 49 and |B| = 6, each epoch consists of342

8 iterations.343
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3 Results and discussion344

In this section, first, we discuss a library of particle-based simulations of the KiD-345

1d model for different system configurations. Then, we continue by demonstrating the346

calibration of the single-moment bulk scheme using the library of particle-based simu-347

lations as a benchmark.348

3.1 Library of rain shaft simulations349

We have generated a library of KiD-1d model simulations using the super-droplet350

method (SDM). This library includes simulations with varying values of the updraft am-351

plitude ((ρw)0), initial aerosol number density (Na), and ground-level pressure (p0). The352

updraft amplitude ranges from 1.0 kg m−2 s−1 to 4.0 kg m−2 s−1 in increments of 0.5353

kg m−2 s−1. The initial aerosol number density takes seven values ranging from Na =354

10 cm−3 to Na = 1000 cm−3, all corresponding to concentration at standard temper-355

ature and pressure conditions for dry air. Simulations are conducted for five different sur-356

face air pressures, ranging from p0 = 988 hPa to p0 = 1012 hPa in increments of 6357

hPa. Each increment in air pressure corresponds to an approximate increase of 0.5 K in358

the prescribed temperature profile, which impacts the cloud condensate profile. For each359

combination of variables, we produce 100 simulations to compute the average and vari-360

ability of the results.361

By varying the values of the updraft speed and surface pressure, we can influence362

the amount of condensed cloud water and, consequently, the precipitation. Additionally,363

changing the initial aerosol number density influences the collision and coalescence of droplets,364

thereby influencing the formation of rain (Tao et al., 2012). The selection of different365

values for these control parameters allows us to generate various rain formation condi-366

tions. This variety is crucial for providing the calibration process with diverse training367

data, thus enhancing the generalizability of the trained model.368

In addition to the simulations of the KiD-1d model involving all processes, we con-369

ducted additional simulations where the collision and coalescence processes were excluded.370

These simulations, referred to as condensation-only cases, do not result in rain forma-371

tion as droplets do not grow large enough to sediment through condensation alone. We372

performed these simulations with the intention of using them as a reference to evaluate373

the numerical advection of ambient moisture and the condensation scheme of the bulk374

model separately from other process parameterizations. Figure 1 (left panels) illustrates375

an example simulation of a condensation-only case. The figure shows the height-time con-376

tours of the cloud water and rainwater specific content, as well as the cloud water path377

(CWP), rainwater path (RWP) and surface rain rate (RR) over time. The cloud water378

path and rainwater path represent the total amount of cloud water and rainwater in a379

column of moist air per unit area, respectively. As is evident in Figure 1 (left panels),380

condensation primarily occurs within the first ten minutes of the simulation (t < t1)381

when the updraft speed is non-zero. After t1 = 10 min, no rainwater forms as collision382

and coalescence processes are not considered, and the cloud water is preserved.383

When collision and coalescence processes are involved, formation of raindrops is384

observed. We use a fixed radius threshold of 50 µm to differentiate raindrops from cloud385

droplets for simulation output analysis. We found the sensitivity of the results to the ex-386

act value of this threshold to be insignificant. Figure 1 (right panels) illustrates the gen-387

eration of rain in the simulation of the KiD-1d model with the inclusion of rain produc-388

tion through particle collision and coalescence. Following the coalescence of particles and389

the formation of raindrops, the raindrops descend due to sedimentation, moving below390

the cloud base where water vapor is not saturated. Consequently, rain evaporation oc-391

curs, resulting in only some of the initial rain water reaching the surface.392
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Figure 1. Simulations of the KiD-1d model using the SDM, both without (left panels) and

with (right panels) the inclusion of rain production through particle collision and coalescence.

The simulations employ an updraft momentum amplitude of 3 kg m−2 s−1 and an initial aerosol

number density of 100 cm−3. Height-time contours for the average specific cloud water content,

qc (a and b), as well as the average specific rainwater content, qr (c and d) are shown. Panels e

and f illustrate the evolution over time of cloud water path, rainwater path, and surface rain rate.

In panel f, variations in the graphs are represented by shading, indicating one standard deviation

above and below the mean.
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Figure 2. Sensitivity of outputs from the KiD-1d model using the SDM to varying updraft

momentum amplitude and initial aerosol number density. The panels display contours of (a)

the maximum cloud water path CWPmax, (b) the maximum rainwater path RWPmax, (c) the

maximum surface rain rate, and (d) the rain initiation time. The results are averaged over 100

simulations.
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Varying the updraft speed and aerosol number density impacts the simulation re-393

sults by influencing the availability of water vapor for condensation and the number of394

particles contributing to rain formation through collision and coalescence. Figure 2 pro-395

vides a visual representation of how updraft speed and aerosol concentration changes af-396

fect various properties in the KiD-1d simulations with a fixed surface pressure of p0 =397

1000 hPa. Increasing the updraft speed enhances supersaturation at any given altitude398

by advecting more water vapor content upward. This heightened supersaturation leads399

to the condensation of more cloud water. Consequently, the increased availability of con-400

densed cloud water results in greater amount of rain. This is evidenced in Figures 2a and401

2b, where both the maximum cloud water path and rainwater path increase with higher402

updraft amplitudes. Additionally, Figure 2b demonstrates that an increase in aerosol con-403

centration leads to a decrease in the maximum rainwater path. This is due to a higher404

number of particles available to carry the same amount of water, resulting in the forma-405

tion of smaller droplets. The formation of smaller droplets reduces the likelihood of col-406

lision and coalescence, consequently decreasing rain production and surface rain rate (Fig-407

ure 2c). The cloud water path (Figure 2a) remains relatively unaffected by aerosol num-408

ber density, except for low values of Na, where simulations with higher Na yield more409

cloud water at high updraft amplitudes. This observation suggests that insufficient aerosols410

in the system may delay condensation due to the limited capacity to carry a high vol-411

ume of cloud water.412

Figure 2d illustrates the variations in rain initiation time with changing updraft413

amplitude and aerosol number density. The rain initiation time is defined as the time414

at which the specific rainwater content surpasses a chosen small threshold (qr = 10−8
415

g kg−1). Both increasing the updraft amplitude and decreasing the aerosol number den-416

sity result in an earlier rain initiation time. Generally, higher updraft amplitudes and417

lower aerosol number densities lead to earlier and more substantial rain formation. Note418

that similar behavior can be observed at other surface pressures, with less rain observed419

for higher surface pressures. These observations highlight the sensitivity of rain forma-420

tion to the values of updraft speed and aerosol number density, suggesting that the mi-421

crophysical processes governing rain formation are susceptible to certain parameters. These422

findings are consistent with the results of Hill et al. (2023), where they demonstrate the423

high sensitivity of rain initiation time and amount to specific parameters and different424

super-droplet implementations.425

The simulations conducted with the KiD-1d model using the SDM serve as a bench-426

mark for calibrating warm-rain bulk microphysics schemes. This dataset encompasses427

a wide range of precipitation conditions, from instances with no rain formation to those428

with substantial rainfall, with a maximum rainwater path exceeding 1.6 kg m−2 for p0 =429

1000 hPa. The observed sensitivities of cloud water content, rain initiation time, and rain-430

water content suggest that the dataset represents diverse rates for microphysics processes,431

including condensation, auto-conversion, accretion, and rain evaporation. We anticipate432

that these sensitivities greatly contribute to the generalizability and effectiveness of the433

calibrated bulk microphysics schemes. However, it’s important to note that the decou-434

pling of microphysics from dynamics, particularly ignoring turbulence effects on collision-435

coalescence processes, is a limitation of this study. This limitation may introduce biases436

in the calibration results and negatively impact the performance of calibrated schemes437

in more complex setups like large eddy simulations or earth system models.438

It is worth noting that the simulations in the KiD-1D model are not aimed at ac-439

curately representing the complex physics of a real precipitating cloud. Specifically, the440

KiD-1d model does not take into account turbulence or temperature fluctuations. Its de-441

sign isolates microphysics from dynamics and thermodynamics, allowing for a focused442

study of microphysics phenomena. This isolation is crucial to ensure that any variations443

observed in the results can be attributed solely to changes in the microphysics schemes444
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Figure 3. Variations of the loss function during calibration for the training set (a) and val-

idation set (b). Graphs in both panels are normalized by the loss of the model with the initial

parameters to allow comparison.

being investigated. In the following subsection, we discuss how we employ the results ob-445

tained from the SDM simulations to calibrate the single-moment bulk scheme.446

3.2 Calibration of a bulk scheme with the library of super-droplet sim-447

ulations448

In this subsection, we present the calibration results of the single-moment bulk mi-449

crophysics scheme using the library of the SDM simulation results. For training the model,450

we use all SDM simulations with varying updraft amplitude and aerosol number den-451

sity at the fixed surface pressure of p0 = 1000 hPa. In total, the training set contains452

|C| = 49 cases. From each case, we extract mean values of specific cloud water content453

qc, rainwater content qr, and humidity qv over intervals of 100 m and 10 min to use in454

the calibration process.455

The validation set, on the other hand, is intentionally selected from configurations456

at a different ground-level pressure than the training set. This intentional selection al-457

lows us to assess whether the calibrated model can effectively capture simulations from458

a dataset that is not used for training. Specifically, the validation set consists of simu-459

lations performed with the surface pressure p0 = 994 hPa with updraft amplitudes of460

(ρw)0 = [2, 3, 4] kg m−2 s−1 and aerosol number density Na = [50, 200] cm−3. It is461

worth noting that the lower ground-level pressure of the validation set corresponds to462

approximately 0.5 K lower temperature. This leads to higher supersaturation and increased463

rain, providing a distinct dataset for validation compared to the training data. As a re-464

sult, it is unnecessary to modify the value of the updraft amplitudes and initial aerosol465

number densities in the validation set from those used in training.466

Figure 3 shows the evolution of the configuration-averaged loss during calibrations467

for both EKI and UKI, using the training and validation sets. Both EKI and UKI achieve468

a reduction of more than 75% in the loss for both the training and validation sets. Al-469

though calibration is continued for 50 epochs, loss reduction for both the training and470

validation sets mainly occurs within 15 epochs, with EKI reducing the error more rapidly.471

Remarkably, the loss reduction for the validation set is almost equal to the reduction for472

the training set, indicating that the calibrated model generalizes well to the precipita-473

tion conditions in the validation set.474

Depending on the stochastic initialization of the parameter ensemble for EKI, EKI475

and UKI may converge to different sets of parameter values that minimize the mismatch476

between bulk method results and SDM simulations. This is demonstrated in Figure 4,477
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Figure 4. Evolution of (a) the two accretion coefficients, χa and ∆a, and (b) the two ter-

minal velocity coefficients, χv and ∆v, during calibrations for both EKI (dashed blue) and UKI

(dashed red). The initial ensembles of parameters are represented by blue circles (EKI) and red

circles (UKI), while the final ensembles of parameters are indicated by blue squares (EKI) and

red squares (UKI). The final ensemble means for all parameters are given in Table 3.

Table 3. Results of the calibration of the single-moment bulk scheme by EKI and UKI.

Columns represent parameter names, the prior parameter values, and the optimal parameter

values from EKI and UKI calibrations. The optimal values are obtained by averaging the final

ensembles of parameters.

Parameter name Prior value EKI optimal value UKI optimal value

τcond 10.0 s 39.7 s 35.0 s
τacnv, 0 1.0 × 103 s 13.4 × 103 s 549.1 × 103 s
αacnv 1.0 0.52 2.09
χv 1.0 0.205 0.213
∆v 0.0 0.228 0.351
χa 1.0 16.61 6.41
∆a 0.0 3.00 0.01
bvent 0.53 0.98 1.48
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Figure 5. Comparison of the simulations of the KiD-1d model without collision processes us-

ing the SDM and the calibrated bulk method by EKI. Updraft amplitude is set to 3 kg m−2 s−1,

and the initial aerosol number density is 100 cm−3. The left panel shows height-time contours

of specific cloud water content, while the right panel displays the specific cloud water content at

T = 20 min. The results from both methods, the SDM and the calibrated bulk method, are in

excellent agreement showing that the bulk scheme well captures the condensation process.

which shows the evolution of the two accretion coefficients, χa and ∆a, as well as the two478

terminal velocity coefficients, χv and ∆v, by both EKI and UKI. While EKI and UKI479

converge to similar results for χv and ∆v, the evolution of the two accretion coefficients480

χa and ∆a during the EKI and UKI calibrations shows significant differences, which in-481

dicates the convergence of EKI and UKI towards two distinct sets of parameters. The482

evolution of all parameters during the EKI and UKI calibrations is provided in Appendix483

B. The final values of all parameters obtained by EKI and UKI are provided in Table 3.484

The main difference between the two parameter sets obtained by EKI and UKI is485

in the auto-conversion and accretion parameters. In the UKI set, the auto-conversion486

parameters, that control the auto-conversion time scale, are significantly larger than those487

in the EKI set. Consequently, the UKI set predicts larger auto-conversion time scales,488

leading to lower auto-conversion rates. However, this change is counterbalanced by the489

smaller values of the accretion coefficients, including ∆a, which governs the exponent of490

qr in the accretion process rate. With a smaller exponent, the accretion process yields491

larger rain production rates for small qr values, particularly in the early stages of rain492

production. Thus, larger accretion rates compensate for the smaller auto-conversion rates,493

resulting in comparable rain formations in the simulations.494

Notably, the optimal auto-conversion time scale obtained by both EKI and UKI495

are larger than the auto-conversion time scale of 1000 s documented in Grabowski and496

Smolarkiewicz (1996). This difference may be attributed to the fact that, unlike Grabowski497

and Smolarkiewicz (1996), we do not consider any auto-conversion threshold. Moreover,498

the exponent of qr in the accretion parameterization, equation (10), is close to one for499

UKI optimal parameters. This is consistent with bulk schemes of Tripoli and Cotton (1980);500

Beheng (1994); Seifert and Beheng (2006). In contrast, the exponent for EKI optimal501

parameters is relatively larger. Since both EKI and UKI achieve an approximate 75%502

reduction in loss, we accept both sets of parameters as valid calibrations for the bulk method.503

Incorporating detailed auto-conversion and accretion rate information in the training data504

could provide further insights and help obtain a unique set of optimal parameters.505

In the simulation of the KiD-1d model, when precipitation processes are not included506

(condensation-only case), the only parameterized process is the condensation of water507

vapor into cloud water by equation 9. Figure 5 shows results of the simulation of the KiD-508

1d model with (ρw)0 = 3 kg m−2 s−1, Na = 100 cm−3 and p0 = 1000 hPa in the509

condensation-only case by using the calibrated bulk method and SDM. Height-time con-510
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tours of specific cloud water content qc and the profiles of qc at t = 20 min are com-511

pared. Note that the bulk method simulation with the result of UKI is very similar to512

that of EKI and is therefore not shown. The simulation results by the calibrated bulk513

method are in excellent agreement with the results of the SDM. This excellent agreement514

confirms the satisfactory performance of the implementation of condensation and wa-515

ter vapor advection in the bulk method simulations.516

Figures 6 and 7 compare simulations using the SDM, the bulk method before train-517

ing, and the calibrated bulk method by EKI and UKI. Figure 6 visualizes contours of518

specific cloud water content qc and specific rainwater content qr in height and time, while519

figure 7 shows profiles of qc and qr at t = 10 min, t = 20 min, t = 30 min, and t = 50520

min. As evidenced in these figures, the bulk method with the initial parameters under-521

estimates the specific cloud water content and incorrectly predicts an early peak in spe-522

cific rainwater content. These deviations suggest an overestimation of rain production523

and sedimentation rates in the bulk method before training. However, both EKI and UKI524

optimal parameters significantly improve the bulk method simulations with respect to525

the SDM results. After calibrations, the auto-conversion parameters τacnv, 0 and αacnv526

increase, resulting in reduced auto-conversion rates. Additionally, the terminal velocity527

parameter χv decreases, leading to reduced sedimentation. On the other hand, the ac-528

cretion parameter χa increases in both EKI and UKI calibrations. However, it is impor-529

tant to note that the accretion rate, which is influenced by sedimentation, is governed530

by the product χaχv. In the calibrated bulk method, this product slightly increases com-531

pared to that with the initial parameters. These parameter adjustments contribute to532

the overall decrease of rain formation and sedimentation, and the reasonable agreement533

of the calibrated bulk method, by both EKI and UKI, with the SDM results.534

While the simulations using the calibrated bulk method by EKI and UKI yield sim-535

ilar overall results, there are differences in specific details. For example, the maximum536

specific rainwater content for the EKI calibrated bulk method exceeds that for the UKI537

calibrated bulk method by more than 30%. Also, when qr for the SDM peaks (t ∼ 20538

min), the EKI calibrated bulk method underestimates qc close to the cloud base while539

the UKI calibrated bulk method overestimates it compared to SDM results. This obser-540

vation suggests that the rain production rate for the EKI calibrated bulk method is over-541

estimated while that for the UKI calibrated bulk method is underestimated. This is con-542

firmed in figure 8 where cloud and rain water path and surface rain rate are visualized543

over time. The rainwater path for the SDM peaks slightly after that for the EKI cali-544

brated bulk method and shortly before that for the UKI calibrated bulk method, indi-545

cating the overestimation of the rain production rate by the EKI calibrated bulk method546

and the underestimation of the rate by the UKI calibrated bulk method. The higher rain547

production rates predicted by the EKI calibrated bulk method occur around the peak548

of qr, which corresponds to the period when accretion is the dominant rain formation549

process. This observation suggests that the EKI calibrated method predicts higher ac-550

cretion rates for large values of qr compared to the UKI calibrated method. This differ-551

ence in accretion rates can be attributed to the higher value of the accretion parame-552

ter χa in the EKI parameter set. Additionally, it is notable that the surface rain rate553

for the EKI calibrated bulk method is more than 30% higher than that for the UKI cal-554

ibrated bulk method. The higher surface rain rate is due to the lower evaporation rate555

of the EKI calibrated bulk method (caused by smaller bvent) than that of the UKI cal-556

ibrated bulk method.557

The bulk method before training incorrectly predicts an early surface rain rate due558

to the incorrect prediction of early rain production. The calibrated bulk methods by both559

EKI and UKI predict the timing of the surface rain rate very well. However, they fail560

to correctly predict the magnitude of the maximum rain rate. The significant error in561

the prediction of the maximum surface rain rate despite capturing qr well can be attributed562

to the inability of the single-moment bulk method to adequately predict the terminal ve-563
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Figure 6. Comparison of the KiD-1d model simulations using the SDM and the bulk method.

Height-time contours of specific cloud water content qc (left panels) and specific rainwater

content qr (right panels) are compared for the simulations using the SDM (a and b), the bulk

method with the initial parameters (c and d), and the calibrated method by EKI (e and f) and

UKI (g and h). Black solid lines indicate qc = 0.3 g kg−1 (left panels) and qr = 0.3 g kg−1 (right

panels), while black dashed lines represent the same contour levels for the SDM results, overlaid

on all panels for comparison. The simulations use (ρw)0 = 3 kg m−2 s−1, Na = 50 cm−3, and

p0 = 994 hPa. The SDM results are the average of 100 simulations.
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Figure 7. Solutions of the SDM and the bulk method with the initial and the calibrated

parameters are compared. The specific cloud water content profiles (top panels) and specific rain-

water content profiles (bottom panels) are shown at times t = 10 min (panels a and e), t = 20

min (panels b and f), t = 30 min (panels c and g) and t = 50 min (panels d and h). The cali-

brated bulk method results are obtained by evaluating the model using the ensemble means. For

the SDM results, the dashed lines represent the average of 100 simulations, while the shadings

visualize the variability, showing plus and minus one standard deviation.
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Figure 8. Comparison of the cloud water path CWP (a), rainwater path RWP (b), and sur-

face rain rate RR (c) for simulations using the SDM (black dashed), the bulk method with the

initial parameters (green dotted), and the calibrated bulk method by EKI (blue dash-dot) and

UKI (red solid). The results of the calibrated bulk method are obtained by evaluating the bulk

method with the ensemble mean. The SDM results represent the average of 100 simulations, and

the profile variability is indicated by shading plus and minus one standard deviation.
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Figure 9. Parameter correlations estimated using the UKI method (a), and contours of the

loss function L(θ; yt) for varying accretion parameters χa and ∆a, while keeping other parameters

fixed at the EKI (b) and UKI (c) optimal values. The markers indicate the optimal values of the

accretion parameters obtained by EKI (b) and UKI (c). The loss values are normalized by the

value of the loss evaluated for the bulk model with the initial parameters.

locity of particles. The poor representation of terminal velocity by the single-moment564

bulk scheme is inevitable as terminal velocity is simply a single-valued function of qr and565

the gravitational size sorting is not captured (Milbrandt & McTaggart-Cowan, 2010).566

The prediction of the maximum surface rain rate can be improved by using multi-moment567

bulk schemes with sedimentation rates that can capture gravitational size sorting.568

In addition to the maximum likelihood estimator, UKI provides correlations be-569

tween model parameters. Figure 9(a) visualizes the correlation map between parame-570

ters of the single-moment bulk scheme obtained by the UKI calibration. For the employed571

training dataset, the calibrated bulk scheme shows strong correlations between the two572

auto-conversion parameters τacnv, 0 and αacnv, between the two accretion coefficients χa573

and ∆a, as well as between the two terminal velocity coefficients χv and ∆v. Also, both574

accretion coefficients are moderately anti-correlated with auto-conversion and terminal575

velocity coefficients.576

The correlations between the two accretion coefficients and between the two ter-577

minal velocity coefficients can be attributed to the compensatory nature of these param-578

eters in their corresponding process rate equations. Specifically, an increase in the scal-579

ing factor (e.g., χa or χv) is accompanied by a corresponding increase in the exponent580

of qr (e.g., ∆a or ∆v). The anti-correlations between the accretion and terminal veloc-581

ity parameters arise from the direct effect of sedimentation on the accretion rate. The582

anti-correlation between the accretion coefficients and the auto-conversion parameters583

is due to the counterbalance between these two processes in the early stages of rain for-584

mation. The strong correlation between the two auto-conversion parameters suggests that585

as the initial number density Na increases, a greater adjustment in the auto-conversion586

process is required to maintain a balanced rain formation process.587

Utilizing the correlation information provided by UKI can contribute to refining588

the parameterizations of the bulk method by identifying a smaller set of uncorrelated589
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parameters for calibrations. For instance, the strong correlation between auto-conversion590

parameters suggests that training the model for only one of the two parameters might591

result in a similar reduction of the model-data mismatch as training for both parame-592

ters.593

The parameter correlations derived from UKI are consistent with the differences594

between the optimal parameter sets obtained by EKI and UKI. In the set of UKI op-595

timal parameters, both auto-conversion parameters are higher than those in the EKI set,596

while both accretion coefficients are lower and both terminal velocity coefficients are slightly597

higher. The parameter correlations and the consistent differences between the EKI and598

UKI optimal parameter sets suggest the existence of a range of parameters for which the599

model-data mismatch remains acceptably small. This is illustrated in Figures 9b and 9c,600

where contours of the configuration-averaged loss function are visualized for varying ac-601

cretion parameters χa and ∆a, while other parameters are fixed at the EKI or UKI op-602

timal values. As evidenced in this figure, the loss function value remains below 25% within603

a notably wide region in the space of χa and ∆a. These results demonstrate the exis-604

tence of a continuous range of parameter combinations that yield satisfactory model per-605

formance, allowing for flexibility in selecting parameter values. Obtaining a unique set606

of parameters can be achieved by providing additional constraints for parameter estima-607

tion through incorporating detailed information about auto-conversion and accretion pro-608

cesses in the training data. By leveraging such information, it may become possible to609

refine the parameterizations of the bulk method and enhance the model’s capability to610

capture the underlying dynamics. The investigation into incorporating auto-conversion611

and accretion process rates into the parameterization of the bulk model is left for future612

research.613

4 Summary and conclusion614

The aim of this study was to improve the accuracy of the representation of cloud615

and precipitation processes within bulk schemes. We presented a calibration framework616

for training warm-rain bulk microphysics schemes by using high-fidelity super-droplet617

simulations. The calibration framework uses ensemble Kalman methods for training the618

models, including ensemble Kalman inversion (EKI) and unscented Kalman inversion619

(UKI). Calibrations are carried out by leveraging simulations of the KiD-1d model, a one-620

dimensional rain-shaft model that has been widely used for studying microphysics schemes.621

In this model, the updraft and the temperature profile are prescribed so that any vari-622

ation in the results can only be attributed to changes in the employed microphysics scheme.623

To benchmark the performance of the bulk methods, we generated a library of super-624

droplet simulations of a rain shaft model. Simulations were carried out for different up-625

draft amplitudes, initial aerosol number density and surface air pressure to provide a wide626

range of precipitation conditions for comparing and evaluating bulk microphysics schemes.627

Our results demonstrate the effectiveness of the calibration framework by apply-628

ing it to a single-moment microphysics model. While calibrations by EKI and UKI re-629

sult in two different sets of parameters, the calibrated bulk method by both EKI and UKI630

shows a significant reduction in model error with respect to the super-droplet simula-631

tions. Specifically, the prediction of cloud and rain profiles showed excellent agreement632

with the reference simulations. However, while the timing of the surface precipitation633

rate showed improvement, the magnitude of the maximum rain rate was overpredicted634

by the single-moment bulk scheme. This finding emphasizes the need for further research635

to capture the surface precipitation rate more accurately, particularly by exploring the636

potential of higher-moment schemes that can represent the gravitational size sorting of637

particles.638
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Figure A1. Comparison of KiD-1d model simulations using the SDM with different numerical

settings. Height-time contours of specific content for cloud water (panel a) and rain (panel b)

are shown. The solid contour lines represent the simulation with Nsd = 512 super-droplets, grid

spacing of dz = 50 m, and time steps of dt = 5 s. This simulation is compared with simulations

using doubled number of super-droplets (dashed), halved grid spacing (dashdot) and halved time

steps (dot). The averages of 100 simulations for each set of numerical settings are shown. The

excellent agreement of results indicates that the KiD-1d model simulations are insensitive to the

numerical settings used.

Our study highlights the potential of calibrating classic parameterizations of mi-639

crophysics using high-fidelity super-droplet simulations. Although super-droplet tech-640

niques are still in their early stages and pose potential limitations in capturing the en-641

tirety of the underlying physical phenomena (Morrison et al., 2020; Hill et al., 2023), lever-642

aging the valuable insights obtained from these simulations can enhance classic micro-643

physics parameterizations. Unlike observational data, these simulations allow us to dis-644

entangle microphysics from other dynamics and calibrate microphysics processes in iso-645

lation from their feedbacks with atmospheric flows. This is a significant advantage, as646

it enables us to explore and refine microphysics parameterizations in a controlled man-647

ner, which would be challenging even with abundant laboratory or observational data.648

Utilizing super-droplet simulations is a promising approach to improve microphysics pa-649

rameterizations, particularly in regions where clouds show strong sensitivity to micro-650

physics parameters. Further research in this direction is needed to explore the full po-651

tential and capability of the super-droplet simulations in improving the accuracy of clas-652

sic parameterizations of cloud microphysics.653

Appendix A Result independence from numerical values654

Figure A1 compares SDM simulations of the KiD-1d model with (ρw)0 = 3 kg655

m−2 s−1, Na = 100 cm−3 and p0 = 1000 hPa for different numerical setups. The ref-656

erence simulation with an average of Nsd = 512 super-droplets per grid box, dz = 50657

m and dt = 5 s is compared against simulations with doubled number of super-droplets,658

halved grid spacing, and halved time step. The results are in excellent agreement, in-659

dicating the independence of the reference simulation from specific numerical values.660

Appendix B Parameter evolution in EKI and UKI calibrations661

Figure B1 displays the evolution of all calibrated parameters during the calibra-662

tion of the single-moment bulk scheme using EKI and UKI methods. The calibrated pa-663

rameters include accretion coefficients, terminal velocity coefficients, auto-conversion co-664

efficients, condensation time scale, and evaporation coefficient. While EKI and UKI show665
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Figure B1. Parameter evolutions of the accretion coefficients χa (a) and ∆a (b), terminal

velocity coefficients χv (c) and ∆v (d), auto-conversion coefficients τacnv, 0 (e) and αacnv (f), con-

densation time scale τcond (g), and evaporation coefficient bvent (h) during calibrations using EKI

(blue) and UKI (red). The parameter uncertainty obtained from UKI is illustrated by shadings,

indicating plus and minus one standard deviation of the parameter ensemble.

comparable final converged values for the terminal velocity coefficients (χv and ∆v) and666

the condensation time scale (τcond), the final converged values of the remaining param-667

eters by EKI and UKI are significantly different.668

Data Availability Statement669

The library of super-droplet simulations is available at https://doi.org/10.5281/670

zenodo.8336442. We used PySDM v2.15 (https://github.com/open-atmos/PySDM)671

to generate the super-droplet simulations. The code for the calibration pipeline can be672

found at https://doi.org/10.5281/zenodo.8362305 and https://github.com/CliMA/673

Kinematic1D.jl. For the calibrations, we used the Julia packages CloudMicrophysics.jl674

v0.13.3 (https://github.com/CliMA/CloudMicrophysics.jl) and EnsembleKalman-675

Processes.jl v1.1 (https://github.com/CliMA/EnsembleKalmanProcesses.jl).676
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