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Statistical non-locality of dynamically coherent
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We analyse a class of stochastic advection problems by conditionally averaging the passive
tracer equation with respect to a given flow state. In doing so, we obtain expressions for
the turbulent diffusivity as a function of the flow statistics spectrum. When flow statistics
are given by a continuous-time Markov process with a finite state space, calculations are
amenable to analytic treatment. When the flow statistics are more complex, we show how
to approximate turbulent fluxes as hierarchies of finite state space continuous-time Markov
processes. The ensemble average turbulent flux is expressed as a linear operator that acts
on the ensemble average of the tracer. We recover the classical estimate of turbulent flux
as a diffusivity tensor, the components of which are the integrated autocorrelation of the
velocity field in the limit that the operator becomes local in space and time.
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1. Introduction

The study of passive tracer transport is of fundamental importance in characterizing
turbulence. However, predicting a chaotic dynamical trajectory over long times is
infeasible (Lorenz 1963), so one must switch to a statistical perspective to make headway
on transport properties. From the analysis of dispersion by Taylor (1922), operator notions
of mixing from Knobloch (1977), computations of ‘effective diffusivity’ by Avellaneda
& Majda (1991), simplified models of turbulence by Pope (2011), rigorous notions of
mixing in terms of Sobolev norms by Thiffeault (2012) or upper bounds on transport
of Hassanzadeh, Chini & Doering (2014), a variety of different approaches have been
developed to elucidate fundamental properties of turbulence.
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In addition to furthering our understanding of turbulence, there are practical applications
for turbulence closures. In particular, Earth Systems Models require closure relations
for the transport of unresolved motions (Schneider et al. 2017); however, the closure
relations are marred by structural and parametric uncertainty, requiring ad hoc tuning
to compensate for biases. Structural biases are associated with scaling laws and closure
assumptions between turbulent fluxes and gradients. Modern studies are bridging the gap
by incorporating more complex physics and novel scaling laws, see as examples the works
of Tan et al. (2018) and Gallet & Ferrari (2020), but the correct functional forms to
represent fluxes still need to be discovered.

The multi-scale nature of turbulent flows, coherent structures and the interconnection
of reacting chemical species and prognostic fields suggest that fluxes are better modelled
using nonlinear and non-local operators in space, time and state. Data-driven methods
relying on flexible interpolants can significantly reduce structural bias, but often at the
expense of interpretability, generalizability or efficiency. Thus, understanding scaling
laws and functional forms of turbulence closures is still necessary to physically constrain
data-driven methods and decrease their computational expense. A promising avenue for
significant progress, lying at the intersection of theory and practice, is the calculation of
closure relations for passive tracers.

The present work addresses a fundamentally different question than that of short-time
Lagrangian statistics, such as the works of Taylor (1922), Moffatt (1983), Weeks, Urbach
& Swinney (1996) and Falkovich, Gawȩ dzki & Vergassola (2001), since our focus is
on Eulerian statistically steady statistics. Consequently, we develop new non-perturbative
techniques to address the question at hand. In particular, the use of path integrals or Taylor
expansions is stymied since perturbation methods based on local information often yield
irredeemably non-convergent expansions for strong flow fields and long time limits. The
calculations herein are more akin to calculating a ground state in quantum mechanics
rather than short-time particle scattering.

A middle ground is the work of Gorbunova et al. (2021), which analyses short-time
Eulerian two-point statistics and makes connections to the Lagrangian approach. There
they use renormalization groups as the workhorse for calculations. The most similar prior
work regarding problem formulation is the upper bound analysis of Hakulinen (2003), in
which all moments of a stochastically advected passive tracer were considered. The scope
was different because the goal was to understand all moments of the resulting stochastic
tracer field advected by the Gaussian model of Kraichnan (1968). Here we focus on exact
expressions for the ensemble mean flux caused by a general class of flow fields. Although
we only focus on the ensemble mean flux of a passive tracer, we do not make restrictions
on the temporal statistics of the stochastic flow field. Furthermore, the methodology we
outline extends to other moments of the flow field and short-time statistics, although we
emphasize neither.

We make arguments akin to those by Kraichnan (1968) to motivate the operator
approach, but our calculation method is fundamentally different. Given that the goal is to
construct an operator rather than estimate a diffusivity tensor acting on the ensemble mean
gradients or deriving upper bounds, we take a field-theoretic perspective (Hopf 1952).
Doing so allows us to derive a coupled set of partial differential equations representing
conditional mean tracers where the conditional averages are with respect to different flow
states. The flux associated with fluctuations is then a Schur complement of the resulting
linear system with respect to statistical ‘perturbation’ variables. Moreover, if the flow
statistics are given by a continuous-time Markov process with a small finite state space,
the Schur complement becomes tractable to compute analytically. Hereafter, we refer
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Statistical non-locality of dynamically coherent structures

to the flux associated with fluctuations as the turbulent flux (which is sometimes also
called an ‘eddy flux’), and the corresponding operator is the turbulent diffusivity operator
(alternatively an ‘effective diffusivity operator’).

The paper is organized as follows. In § 2, we formulate the closure problem and
recast it as one of solving partial differential equations. In § 3, we give two examples:
a one-dimensional (1-D) tracer advected by an Ornstein–Uhlenbeck process and a tracer
advected by a flow field with an arbitrary spatial structure that switches between three
states. Section 4 outlines the general theory, and we apply it to a travelling stochastic wave
in a channel in § 5. Appendices supplement the body of the manuscript. Appendix A shows
how a ‘white-noise’ limit reduces the turbulent diffusivity to a local diffusivity tensor and
how the present theory encompasses the class of flow fields of Kraichnan (1968) in the
‘white-noise’ limit. Appendix B provides a direct field-theoretic derivation of arguments
in § 2, and Appendix C provides a heuristic overview of obtaining continuous-time
Markov processes with finite state space and their statistics from deterministic or stochastic
dynamical systems.

2. Problem formulation

We consider the advection and diffusion of an ensemble of passive tracers θω

∂tθω + ∇ · (ũωθω − κ∇θω
) = s(x) (2.1)

by a stochastic flow field ũω(x, t) where ω labels the ensemble member. Here, s is a
deterministic mean zero source term and κ is a diffusivity constant. (For laboratory
flows, κ would be the molecular diffusivity; for larger-scale problems, we rely on the fact
that away from boundaries, the ensemble mean advective flux (but not necessarily other
statistics) may still be much larger than the diffusive flux. Thus, the exact value of κ will
not matter.) Our target is to obtain a meaningful equation for the ensemble mean,

∂t〈θ〉 + ∇ · (〈ũθ〉 − κ∇〈θ〉) = s(x), (2.2)

which requires a computationally amenable expression for the mean advective flux, 〈ũθ〉,
in terms of the statistics of the flow field, ũω(x, t), and the ensemble average of the tracer,
〈θ〉. Thus, the closure problem is to find an operator O that relates the ensemble mean, 〈θ〉,
to the ensemble mean advective-flux, 〈ũθ〉, i.e.

O[〈θ〉] = 〈ũθ〉. (2.3)

We show how to define (and solve for) the operator O. We do so by writing down the
Fokker–Planck/master equation for the joint Markov process (ũω, θω) corresponding to
(2.1), integrating with respect to all possible tracer field configurations and manipulating
the resulting system of partial differential equations. The operator will be linear with
respect to its argument and depend on the statistics of the flow field.

We assume all tracer ensemble members to have the same initial condition and, thus,
the ensemble average here is with respect to different flow realizations. The only source
of randomness comes from different flow realizations. Throughout the manuscript, we
assume homogeneous Neumann boundary conditions for the tracer and zero wall-normal
flow for the velocity field when boundaries are present. Combined with the assumption that
the source term is mean zero, these restrictions imply that the tracer average is conserved.

For the statistics of the flow field, we consider a continuous-time Markov process with
known statistics, as characterized by the generator of the process. When the state space of
the flow is finite with N states, we label all possible flow configurations corresponding to
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steady flow fields by un(x), where n is the associated state index. We will keep with the
convention of using the ũ as a dynamic variable and u as a fixed flow structure. These
choices represent the flow as a Markov jump process where the jumps occur between flow
fields with a fixed spatial structure.

Physically, we think of these states as representing coherent structures in a turbulent
flow. (This is viewed as a finite volume discretization in function space where the states are
the ‘cell averages’ of a control volume in function space. Thus, the transition probability
matrix becomes an approximated Perron–Frobenius operator of the turbulent flow.) Suri
et al. (2017) provide the experimental and numerical motivation for this philosophy in
the context of an approximate Kolmogorov flow. By its very nature, a turbulent flow that is
chaotic and unpredictable over long time horizons is modelled as being semi-unpredictable
through our choice. Over short horizons, the probability of remaining in a given state is
large. The flow is limited to moving to a subset of likely places in phase space in the
medium term. Over long time horizons, the most one can say about the flow is related to
the likelihood of being found in the appropriate subset of phase space associated with the
statistically steady state.

Thus, we proceed by characterizing the probability, P, of transitioning from state n to
state m by a transition matrix P(τ ),

P{ũω(x, t + τ) = um(x)|ũω(x, t) = un(x)} = [P(τ )]mn. (2.4)

The transition probability is defined through its relation to the generator Q,

P(τ ) ≡ exp(Qτ), (2.5)

where exp(Qτ) is a matrix exponential. Each entry of P(τ ) must be positive.
Furthermore, for each τ , the columns of P(τ ) sum to one since the total probability must
always sum to one. Similarly, Q’s off-diagonal terms must be positive and the column
sum of Q must be zero. (Indeed, to first order, exp(Q dt) = I + Q dt. The positivity
requirement of the transition probability P(dt) = exp(Q dt) necessitates the positivity
of Q’s off-diagonal terms and thus, in turn, the negativity of its diagonal terms.)

We denote the probability of an ensemble member, ũω, being found at state m at time t
by Pm(t),

Pm(t) = P{ũω(x, t) = um(x)}. (2.6)

The evolution equation for Pm(t) is the master equation,

d
dt
Pm =

∑
n

QmnPn. (2.7)

We assume that (2.7) has a unique steady state and denote the components of the steady
state by Pm.

We have used several ‘P’ at this stage, and their relation is:

(i) P denotes a probability;
(ii) P(τ ) denotes the transition probability matrix for a time τ in the future;

(iii) Pm(t) denotes the probability of being in state m at time t. The algebraic relation∑
m

Pm(t + τ)êm = P(τ )
∑

n

Pn(t)ên (2.8)

holds;
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Statistical non-locality of dynamically coherent structures

(iv) in addition, we use Pm for the statistically steady probability of being found in state
m, in the limit

lim
t→∞Pm(t) = Pm. (2.9)

We exploit the information about the flow field to infer the mean statistics of the passive
tracer θω. We do so by conditionally averaging the tracer field θω with respect to a given
flow state um. More precisely, given the stochastic partial differential equation,

P{ũω(x, t + τ) = um(x)|ũω(x, t) = un(x)} = [exp(Qτ)]mn, (2.10)

∂tθω + ∇ · (ũωθω − κ∇θω
) = s(x), (2.11)

we shall obtain equations for probability weighted conditional means of θω,

Θm(x, t) ≡ 〈θω〉ũω(x,t)=um(x)Pm(t). (2.12)

Empirically, the probability weighted conditional average is computed by examining all
ensemble members at a fixed time step, adding up only the ensemble members that are
currently being advected by state um and then dividing by the total number of ensemble
members. We will show that the evolution equation for Θm is

d
dt
Pm =

∑
n

QmnPn, (2.13)

∂tΘm + ∇ · (umΘm − κ∇Θm) = s(x)Pm +
∑

n

QmnΘn. (2.14)

As we shall see, the explicit dependence on the generator in (2.14) yields considerable
information. We recover the equation for the tracer ensemble mean, (2.2), by summing
(2.14) over the index m, using 〈θ〉 = ∑

mΘm,
∑

m Qmn = 0, and
∑

m Pm = 1,

∂t
∑

m

Θm + ∇ ·
(∑

m

umΘm − κ∇
∑

m

Θm

)
= s(x) (2.15)

⇔
∂t〈θ〉 + ∇ · (〈ũθ〉 − κ∇〈θ〉) = s(x). (2.16)

The presence of the generator when taking conditional averages is similar to the
entrainment hypothesis in the atmospheric literature. See, for example, Tan et al. (2018)
for its use in motivating a turbulence closure; however, here, we derive the result from
the direct statistical representation instead of hypothesizing its presence from a dynamical
argument.

We give a brief derivation of (2.13) and (2.14) using a discretization of the
advection-diffusion equation here. For an alternative derivation where we forego
discretization, see Appendix B, and for a brief overview of the connection between the
discrete, continuous and mixed master equation, see Appendix C or, in a simpler context,
the work of Hagan, Doering & Levermore (1989). Most of the terms in (2.14) are obtained
by applying a conditional average to (2.11), commuting with spatial derivatives when
necessary and then multiplying through by Pm; however, the primary difficulty lies in
proper treatment of the conditional average of the temporal derivative. We circumvent the
problem in a roundabout manner: discretize the advection-diffusion equation, write down
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the resulting master equation, compute moments of the probability distribution and then
take limits to restore the continuum nature of the advection-diffusion equation.

A generic discretization (in any number of dimensions) of (2.11) is of the form

d
dt
θ i +

∑
jkc

Ac
ijkũk,c

ω θ
j −

∑
j

Dijθ
j = si (2.17)

for some tensor Ac
ijk, representing advection, and matrix Dij, representing diffusion. Here,

each i, j and k corresponds to a spatial location, and the index c corresponds to a
component of the velocity field ũ. The variable θ i is the value of the tracer at grid location i
and vk,c is the value of the cth velocity component and grid location k. The master equation
for the joint probability density for each component θ i and Markov state m, ρm(θ), where
θ = (θ1, θ2, . . .) and the m-index denotes a particular Markov state, is a combination of
the Liouville equation for (2.17) and the transition rate equation for (2.10),

∂tρm =
∑

i

∂

∂θ i

⎡⎣⎛⎝∑
jkc

Ac
ijkuk,c

m θ j −
∑

j

Dijθ
j − si

⎞⎠ ρm

⎤⎦ +
∑

n

Qmnρn. (2.18)

Define the following moments:

Pm =
∫

dθρm and Θ j
m =

∫
dθθ jρm. (2.19a,b)

We obtain an equation for Pm by integrating (2.18) by dθ to yield

d
dt
Pm =

∑
n

QmnPn (2.20)

as expected from (2.7). The equation for Θ	
m is obtained by multiplying (2.18) by θ	 and

then integrating with respect to dθ ,

d
dt
Θ	

m = −
∑
jkc

Ac
	jkuk,c

m Θ j
m +

∑
j

D	jΘ j
m + s	Pm +

∑
n

QmnΘ
	
n , (2.21)

where we integrated by parts on the
∫

dθθ	∂θ i• term. Upon taking limits of (2.21), we
arrive at (2.13) and (2.14), repeated here for convenience,

d
dt
Pm =

∑
n

QmnPn, (2.22)

∂tΘm + ∇ · (umΘm − κ∇Θm) = s(x)Pm +
∑

n

QmnΘn. (2.23)

We compare (2.23) to the direct application of the conditional average to (2.11) followed
by multiplication with Pm to infer

〈∂tθω〉ũω(x,t)=um(x)Pm = ∂tΘm −
∑

n

QmnΘn. (2.24)

In summary, for an m-dimensional advection-diffusion equation and N Markov states,
(2.13) and (2.14) are a set of N-coupled m-dimensional advection-diffusion equations
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Statistical non-locality of dynamically coherent structures

with N different steady velocities. When c continuous variables describe the statistics of
the flow field, the resulting equation set becomes an m + c dimensional system. Stated
differently, if the statistics of ũω are characterized by transitions between a continuum
of states associated with variables α ∈ R

c and Fokker–Planck operator Fα , then the
conditional averaging procedure yields

∂tP = Fα[P], (2.25)

∂tΘ + ∇ · (uΘ − κ∇Θ) = s(x)P + Fα[Θ], (2.26)

where P = P(α, t), Θ = Θ(x,α, t) and u = u(x,α). Equations (2.22) and (2.23) are
thought of as finite volume discretizations of flow statistics in (2.25) and (2.26). We give
an explicit example in § 3.1 and another in § 5.

Our primary concern in this work is to use (2.22) and (2.23), or analogously (2.25)
and (2.26), to calculate meaningful expressions for 〈ũθ〉; however, we shall first take a
broader view to understand the general structure of the turbulent fluxes. We attribute the
following argument to Weinstock (1969) but use different notation and make additional
simplifications.

Applying the Reynolds decomposition

θω = 〈θ〉 + θ ′
ω and ũω = 〈ũ〉 + ũ′

ω (2.27)

yields

∂t〈θ〉 + ∇ · (〈ũ〉〈θ〉 + 〈ũ′θ ′〉 − κ∇〈θ〉) = s, (2.28)

∂tθ
′
ω + ∇ · (−〈ũ〉〈θ〉 − 〈ũ′θ ′〉 + ũωθω − κ∇θ ′

ω

) = 0. (2.29)

The perturbation equation is rewritten as

∂tθ
′
ω + ∇ · (ũ′

ωθ
′
ω − 〈ũ′θ ′〉 + 〈ũ〉θ ′

ω − κ∇θ ′
ω

) = −∇ · (ũ′
ω〈θ〉) . (2.30)

This equation is an infinite system (or finite, depending on the number of ensemble
members) of coupled partial differential equations between the different ensemble
members. The ensemble members are coupled due to the turbulent flux, 〈ũ′θ ′〉. The key
observation is to notice that the terms on the left-hand side involve the perturbation
variables and not the ensemble mean of the gradients. Assuming it is possible to find
the inverse, the Green’s function for the large linear system is used to yield

θ ′
ω(x, t) = −

∫
dx′ dt′ dμω′Gωω′(x, t|x′, t′)∇ · (ũ′

ω′ 〈θ〉) , (2.31)

where we also have to integrate with respect to the measure defining the different
ensemble members through dμω′ . In our notation, this implies 〈θ〉 = ∫

dμωθω. We use
this expression to rewrite the turbulent flux as

〈ũ′θ ′〉 = −
∫

dx′ dt′ dμω dμω′ ũ′
ω(x, t)Gωω′(x, t|x′, t′)

[∇ · (ũ′
ω′(x′, t′)〈θ〉(x′, t′)

)]
.

(2.32)
We make two simplifications for illustrative purposes.

(i) All ensemble averages are independent of time.
(ii) The flow is incompressible, i.e. ∇ · ũ = 0.
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Equation (2.32) becomes

〈ũ′θ ′〉 = −
∫

dx′ dt′ dμω dμω′
[
ũ′
ω(x, t)Gωω′(x, t|x′, t′)ũ′

ω′(x′, t′)
] · ∇〈θ〉(x′). (2.33)

We perform the t′, α, ω integrals first to define the turbulent diffusivity tensor kernel as

〈ũ′θ ′〉 = −
∫

dx′
∫

dt′ dμω dμω′
[
ũ′
ω(x, t)⊗ ũ′

ω′(x′, t′)Gωω′(x, t|x′, t′)
]

︸ ︷︷ ︸
K(x|x′)

·∇〈θ〉(x′),

(2.34)

= −
∫

dx′K(x|x′) · ∇〈θ〉(x′). (2.35)

The independence of K with respect to t follows from the time-independence of 〈ũ′θ ′〉 and
〈θ〉. In total, we see

〈ũθ〉 = 〈ũ〉〈θ〉 −
∫

dx′K(x|x′) · ∇〈θ〉(x′). (2.36)

An insight from (2.36) is the dependence of turbulent fluxes 〈ũ′θ ′〉 at location x as a
weighted sum of gradients of the mean variable 〈θ〉 at locations x′. The operator is linear
and amenable to computation, even in turbulent flows (Bhamidipati, Souza & Flierl 2020).

We consider the spectrum for the turbulent diffusivity operator
∫

dx′K(x|x′)• as a
characterization of turbulent mixing by the flow field ũω(x, t). We comment that the
operator

∫
dx′K(x|x′)• is a mapping from vector fields to vector fields, whereas the kernel

K(x|x′) is a mapping from two positions to a tensor.
For example, consider a 1-D problem in a periodic domain x ∈ [0, 2π). If K(x|x′) =

κeδ(x − x′) for some positive constant κe, the spectrum of the operator is flat and turbulent
mixing remains the same on every length scale. If K(x|x′) = −κe∂

2
xxδ(x − x′), then the

rate of mixing increases with increasing wavenumber and one gets hyperdiffusion. Lastly,
if
∫

dx′K(x|x′)• = (κe − ∂xx)
−1, then the kernel is non-local and the rate of mixing

decreases at smaller length scales.
In the following section, we calculate

∫
dx′K(x|x′)• directly from the conditional

equations, discuss the general structure in § 4 and then apply the methodology to a
wandering wave in a channel in § 5.

3. Examples

We now go through two examples to understand the implications of (2.13) and (2.14).
The two examples illustrate different aspects of the conditional averaging procedure. The
first aspect is the ability to approximate continuous stochastic processes as one with a
finite state space, i.e. a Markov jump process. The second aspect is to obtain closed-form
formulae for a Markov jump process. In both cases, we use the methodology to calculate
turbulent diffusivities for statistically steady states.

The first example is the advection of a passive tracer in a 1-D periodic domain by
an Ornstein–Uhlenbeck process: perhaps the simplest class of problems amenable to
detailed analysis. See Pappalettera (2022) for a mathematical treatment of this problem
without source terms. The second example further builds intuition for the statistical
significance of the conditionally averaging procedure by examining a three-velocity state
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approximation to an Ornstein–Uhlenbeck in an abstract n-dimensional setting and a
concrete two-dimensional (2-D) setting.

3.1. Ornstein–Uhlenbeck process in one dimension
Consider the advection of a 1-D tracer by an Ornstein–Uhlenbeck (OU) process in a 2π
periodic domain. The equations of motion are

dũω = −ũω dt +
√

2 dWω, (3.1)

∂tθω = −ũω∂xθω + κ∂xxθω + s(x), (3.2)

where s is a mean zero source, ω labels the ensemble member and we choose κ = 0.01
for the diffusivity constant. We shall calculate the turbulent diffusivity operator for this
system in two different ways. The first will be by simulating the equations and the second
will be by using numerical approximations of the conditional mean equations.

Since the flow field u is independent of the spatial variable and the domain is periodic,
we decompose the tracer equation using Fourier modes and calculate a diffusivity as a
function of wavenumber k, wavenumber by wavenumber. Decomposing θω as

θω(x, t) =
∞∑

n=−∞
θ̂n
ω(t)e

iknx and s(x) =
∞∑

n=−∞
ŝneiknx, (3.3a,b)

where kn = n, yields

dũω = −ũω dt +
√

2 dWω, (3.4)

d
dt
θ̂n
ω = −ũωiknθ̂

n
ω − κk2

nθ̂
n
ω + ŝn, (3.5)

which are ordinary differential equations for each wavenumber kn with no coupling
between wavenumbers. We define a ‘turbulent diffusivity’ on a wavenumber by
wavenumber basis with

κT(kn) = − 〈ũθ̂n〉
〈iknθ̂n〉 , (3.6)

which is a flux divided by a gradient. A local diffusivity would be independent of
wavenumber. Here the averaging operator, 〈·〉, is an average over all ensemble members.
This quantity is independent of the source wavenumber amplitude, ŝn, for non-zero sources
and conventions for scaling the Fourier transform. With this observation in place, we
take our source term to be s(x) = δ(x)− 1 so that ŝn = 1 for all n /= 0 and ŝ0 = 0.
We numerically simulate (3.1) and (3.2) in spectral space until a time t = 25 using 106

ensemble members and then perform the ensemble average at this fixed time. We have
finished the description for the first method of calculation. We now move on to using the
conditional mean equations directly.

The conditional mean equations recover the same result as the continuous ensemble
mean. We show this through numerical discretization. The conditional mean equation
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version of (3.1) and (3.2) is

∂tP = ∂u (−P + ∂uP) , (3.7)

∂tΘ = −u∂xΘ + κ∂xxΘ + Ps + ∂u (−Θ + ∂uΘ) , (3.8)

where Θ = Θ(x, u, t) and P = P(u, t). We make the observation∫ ∞

−∞
duΘ = 〈θ〉 and

∫ ∞

−∞
duuΘ = 〈ũθ〉. (3.9a,b)

To discretize the u variable, we invoke a finite volume discretization by integrating
with respect to N = N′ + 1 control volumes Ωm = [(2m − 1 − N′)/

√
N′, (2m + 1 −

N′)/
√

N′] for m = 0, . . . ,N′, a procedure which is detailed in Appendix C.2. The result is

∂tPm =
∑
m′

Qmm′Pm′, (3.10)

∂tΘm = −um∂xΘ̂m + κ∂xxΘ̂
n
m + Pms +

∑
m′

Qmm′Θm′, (3.11)

where∫
Ωm

duΘ = Θm,

∫
Ωm

duP = Pm, um = 2√
N′ (m − N′/2),

∫
Ωm

duuΘ ≈ umΘm,

(3.12a–c)

and Qmm′ = (−N′δmm′ + m′δ(m+1)m′ + (N′ − m′)δ(m−1)m′)/2 and m = 0, . . . ,N′. This
approximation is the same as that used by Hagan et al. (1989) to represent the
Ornstein–Uhlenbeck process by Markov jump processes, but now justified as a finite
volume discretization. Observe that for N = 2, we have a dichotomous velocity process

∂tP1 = −0.5P1 + 0.5P2, (3.13)

∂tP2 = −0.5P2 + 0.5P1, (3.14)

∂tΘ1 = −∂xΘ̂1 + κ∂xxΘ1 + P1s − 0.5Θ1 + 0.5Θ2, (3.15)

∂tΘ2 = ∂xΘ̂2 + κ∂xxΘ1 + P2s − 0.5Θ2 + 0.5Θ1 (3.16)

and for N = 3, we have a generalization

∂tP1 = −P1 + 0.5P2, (3.17)

∂tP2 = −P2 + P1 + P3, (3.18)

∂tP3 = −P3 + 0.5P2, (3.19)

∂tΘ1 = −
√

2∂xΘ̂1 + κ∂xxΘ1 + P1s −Θ1 + 0.5Θ2, (3.20)

∂tΘ2 = 0∂xΘ̂2 + κ∂xxΘ1 + P2s −Θ2 +Θ1 +Θ3, (3.21)

∂tΘ3 =
√

2∂xΘ̂3 + κ∂xxΘ1 + P3s −Θ3 + 0.5Θ2, (3.22)

similar to the models of Davis et al. (1991) and Ferrari, Manfroi & Young (2001).
The presence of an evolution equation for Pn accounts for statistically non-stationary
states of the flow field. Alternative discretizations are possible. For example, using
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Figure 1. Wavenumber diffusivities. We show the turbulent diffusivity estimate as a function of wavenumber.
Here we see that different wavenumbers, or equivalently length scales, produce different estimates of the
turbulent diffusivity. Furthermore, we show that the different N-state approximations yield an increasingly
better approximation to the Ornstein–Uhlenbeck empirical estimate.

a spectral discretization for the u variable via Hermite polynomials converges to the
continuous system at a faster rate; however, the resulting discrete system no longer has
an interpretation as a Markov jump process for three or more state variables.

Next, taking the Fourier transform in x yields

d
dt
Θ̂n

m = −umiknΘ̂
n
m − κk2

nΘ̂
n
m +

∑
m′

Qmm′Θ̂n
m′ . (3.23)

We solve for the steady-state solution

0 =
∑
m′

Qmm′Pm′, (3.24)

0 = −umiknΘ̂
n
m − κk2

nΘ̂
n
m + Pmŝn +

∑
m′

Qmm′Θ̂n
m′ (3.25)

and then compute

κE(kn) = −

∑
m

umΘ̂
n
m∑

m

iknΘ̂
n
m

⇒ −

∫ ∞

−∞
duΘ̂nu∫ ∞

−∞
du(iknΘ̂

n)

(3.26)

for various choices of discrete states. The calculations in the numerator and denominator
are equivalent to ensemble averages.

We compare the two methods of calculation in figure 1. We see that increasing
the number of states from N = 2 to N = 15 yields, for each wavenumber, ensemble
averages similar to those of the Ornstein–Uhlenbeck process. The explicit formula for
N = 3 is given in the next section. We stop at N = 15 states since all wavenumbers
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Figure 2. Kernels for N-state systems. Here we show the turbulent diffusivity kernels for several
approximations of the Ornstein–Uhlenbeck diffusivity kernel. We compare all kernels to the N = 15 state
kernel, which is a good approximation to the OU process kernel. We see that the width of the kernel is
comparable to the domain. The non-locality of the kernel is a consequence of the turbulent diffusivity estimate
differing on a wavenumber per wavenumber basis.

in the plot are within 1 % of one another. The n = 0 wavenumber is plotted for
convenience as well and, in the case of the present process, also happens to correspond
to the velocity autocorrelation. The correspondence of all velocity states (including the
Ornstein–Uhlenbeck process) at wavenumber kn = 0 is particular to this system and is
not a feature that holds in general. The ‘large scale limit’, corresponding to wavenumber
kn = 0, can often be considered an appropriate local diffusivity definition.

Although we use the finite volume discretization of velocity states as approximations
to the Ornstein–Uhlenbeck process, they also constitute a realizable stochastic process in
the form of a Markov jump process. Thus, each finite state case can be simulated from
whence the turbulent diffusivity estimate in figure 1 is exact rather than an approximation.
We choose a particular example with N = 3 in the following section.

Furthermore, each wavenumber kn yields a different estimate of the turbulent diffusivity.
In particular, the decrease of turbulent diffusivity as a function of wavenumber implies
non-locality. Choosing a forcing that is purely sinusoidal of a given mode would yield
different estimates of turbulent fluxes. For example, forcing with s(x) = sin(x)would yield
a diffusivity estimate of κT(1) ≈ 0.58, whereas forcing with s(x) = sin(2x) would yield a
diffusivity estimate of κT(2) ≈ 0.34, as implied by figure 1.

In the present case, the inverse Fourier transform of the turbulent diffusivity yields
the turbulent diffusivity operator in real space. Since products in wavenumber space are
circular convolutions in real space, we naturally guarantee the translation invariance of the
kernel for the present case. The turbulent diffusivity kernels are shown in figure 2. Thus,
the equation for the ensemble mean is

− ∂x (K ∗ ∂x〈θ〉 + κ∂x〈θ〉) = s(x), (3.27)

where ∗ is a circular convolution with the kernel in figure 2.
To illustrate the action of a non-local operator, we show the implied flux for a gradient

that is presumed to have the functional form

∂x〈θ〉 = exp(−2(x − π)2)− exp(−10(x − 9π/8)2). (3.28)
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Figure 3. Flux prediction from the kernel. Given the ensemble mean gradient (green), we convolve with the
N = 15 state kernel to get the flux (yellow) in panel (a). We see that the gradient changes sign while the
flux always remains negative. To further illustrate the effect of non-locality, we show flux versus gradient in
panel (b). The blue regions are down-gradient and the red regions are up-gradient. A local diffusivity estimate
would be a straight line through the origin, whose slope determines the diffusivity constant.

The flux computed from the convolution with the N = 15 state kernel

〈ũθ〉 = −K ∗ ∂x〈θ〉 (3.29)

is shown in figure 3. Even though the gradient changes sign, we see that the flux remains
purely negative, i.e. the flux is up-gradient at particular points of the domain. Furthermore,
the figure 3(b) does not resemble a straight line through the origin, as would be the
case for a local diffusivity. The red portion highlights the ‘up-gradient’ part of the
flux-gradient relation. We point out these features to illustrate the limitations of a purely
local flux-gradient relationship.

This section focused on a flow field with a simple spatial and temporal structure. In the
next section, we derive the turbulent diffusivity operator for a flow with arbitrary spatial
structure but with a simple statistical temporal structure: a three-state velocity field whose
amplitude is an approximation to the Ornstein–Uhlenbeck process.

3.2. A generalized three-state system with a 2-D example
For this example, we consider a Markov process that transitions between three
incompressible states u1(x) = u(x), u2(x) = 0 and u3(x) = −u(x). We use the three-state
approximation to the Ornstein–Uhlenbeck process, in which case we let the generator be

Q = γ

⎡⎣−1 1/2 0
1 −1 1
0 1/2 −1

⎤⎦ , (3.30)

where γ > 0. This generator implies that the flow field stays in each state for an
exponentially distributed amount of time, with each state’s rate parameter γ . Flow fields
u1 and u3 always transition to state u2 and u2 transitions to either u1 or u3 with
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50 % probability. This stochastic process is a generalization of the model considered in
the previous section and the class of problems considered by Ferrari et al. (2001) since the
flow field can have spatial structure and is not limited to one dimension.

The three-state system is viewed as a reduced-order statistical model for any flow
field that randomly switches between clockwise or counterclockwise advection, such
as the numerical and experimental flows of Sugiyama et al. (2010). In their work, the
numerical computations of 2-D Rayleigh–Bénard convection in a rectangular domain
with no-slip boundary conditions along all walls yielded large-scale convection rolls that
flipped orientation at random time intervals upon particular choices of Rayleigh and
Prandtl numbers. In addition, they showed that the phenomenology could be observed
in a laboratory experiment with a setup similar to that of Xia, Sun & Zhou (2003).
In general, we expect reducing the statistics of a flow to a continuous-time Markov
process with discrete states to be useful and lead to tractable analysis in fluid flows
characterized by distinct well-separated flow regimes with seemingly random transitions
between behaviours. Consequently, a similar construction is possible for more complex
three-dimensional flow fields, such as those of Brown & Ahlers (2007), or geophysical
applications (Zhang, Zhang & Tian 2022).

Proceeding with calculations, we note that the eigenvectors of the generator are

v1 =
⎡⎣1/4

1/2
1/4

⎤⎦ , v2 =
⎡⎣ 1/2

0
−1/2

⎤⎦ and v3 =
⎡⎣ 1/4

−1/2
1/4

⎤⎦ (3.31a–c)

with respective eigenvalues λ1 = 0, λ2 = −γ and λ3 = −2γ .
The statistically steady three-state manifestation of (2.13) and (2.14) is

∇ · (uΘ1) = κ�Θ1 + s(x)/4 − γΘ1 + γΘ2/2, (3.32)

0 = κ�Θ2 + s(x)/2 − γΘ2 + γΘ1 + γΘ3, (3.33)

−∇ · (uΘ3) = κ�Θ3 + s(x)/4 − γΘ3 + γΘ2/2. (3.34)

We define a transformation using the eigenvectors of the generator Q,

⎡⎣1/4 1/2 1/4
1/2 0 −1/2
1/4 −1/2 1/4

⎤⎦⎡⎣ϕ1
ϕ2
ϕ3

⎤⎦ =
⎡⎣Θ1
Θ2
Θ3

⎤⎦ ⇔
⎡⎣ϕ1
ϕ2
ϕ3

⎤⎦ =
⎡⎣1 1 1

1 0 −1
1 −1 1

⎤⎦⎡⎣Θ1
Θ2
Θ3

⎤⎦ (3.35)

resulting in the equations

∇ · (uϕ2) = κ�ϕ1 + s(x), (3.36)
1
2 u · ∇ϕ1 + 1

2 u · ∇ϕ3 = κ�ϕ2 − γ ϕ2, (3.37)

u · ∇ϕ2 = κ�ϕ3 − 2γ ϕ3. (3.38)

We comment that ϕ1 = 〈θ〉, and that ϕ2 and ϕ3 are thought of as perturbation variables.
Furthermore, the turbulent flux is 〈ũ′θ ′〉 = uϕ2. We eliminate dependence on the
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perturbation variables ϕ2 and ϕ3 by first solving for ϕ3 in terms of ϕ2,

ϕ3 = (κ�− 2γ )−1 u · ∇ϕ2, (3.39)

and then solving for ϕ2 in terms of ϕ1,

ϕ2 =
(
κ�− γ − 1

2 u · ∇ (κ�− 2γ )−1 u · ∇
)−1 1

2 u · ∇ϕ1. (3.40)

And finally, we write our equation for the ensemble mean as

∇ ·
(

u
(
κ�− γ − 1

2 u · ∇ (κ�− 2γ )−1 u · ∇
)−1 1

2 u · ∇〈θ〉
)

= κ�〈θ〉 + s(x) (3.41)

from whence we extract the turbulent diffusivity operator∫
dx′K(x|x′) • =u

(
γ − κ�+ 1

2 u · ∇ (κ�− 2γ )−1 u · ∇
)−1 1

2 u. (3.42)

We point out a few salient features of (3.42).
For large κ , we have ∫

dx′K(x|x′)• → u (γ − κ�)−1 1
2 u. (3.43)

The inverse Helmholtz operator, (γ − κ�)−1, damps high spatial frequency components
of ensemble mean gradients. Thus, the operator’s eigenvalues decrease as one examines
increasingly fine-scale structure. Intuitively, as one examines a small-scale structure, the
presence of diffusivity leads to lower turbulent fluxes, expressing that it is challenging to
transport something that immediately diffuses.

A second observation pertains to the presence of the eigenvalue of the generator in the
operator. If the flow field changes rapidly, transitioning between the disparate states, then
γ is large and one can expect the turbulent diffusivity to be local. In other words, the
flow does not stay sufficiently long time near a coherent structure. More concretely, larger
transition rates correspond to an enhanced locality in the turbulent diffusivity operator
since, as γ → ∞, ∫

dx′K(x|x′)• → 1
2γ

u ⊗ u. (3.44)

Observe that (3.44) is the integrated autocorrelation of the stochastic flow field. Whether
or not non-local effects matter depends on the characteristic time scale of the flow field,
LU−1 as well as the characteristic time scale for diffusion L2/κ , as it compares to the
characteristic time scale for transitioning between states, γ−1.

We see that the κ → 0 limit retains a non-local feature since∫
dx′K(x|x′)• → u

(
γ − 1

4γ
(u · ∇)(u · ∇)

)−1 1
2

u (3.45)

and the operator (u · ∇)(u · ∇) can have a significant spatial structure. To further
understand this point, we simplify by using the example from the previous section.
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Using the 1-D example in Fourier space and using the usual transcriptions � → −k2,
∇ → ιk, and with u > 0, the kernel is

u2

2(γ + κk2)+ u2k2

(κk2 + 2γ )

→ u

2γ
u

4γ 2

u2 + k2

⇒ K(x, x′) = u
2

exp
(

−2γ
u

∣∣x − x′∣∣) ,
(3.46)

where in the last line, we used the inverse Fourier transform on the real line to simplify
the structure of the kernel. (Accounting for finite domain effects yields the Fourier series
of a hyperbolic cosine.) The left-most expression corresponds to the blue dots in figure 1
for N = 3, u = √

2, γ = 1 and κ = 0.01 for each wavenumber k ∈ {0, 1, 2, . . . , 7}. In the
right-most expression, we see the mean free path 	 ≡ u/(2γ ) as the characteristic width of
the non-local kernel. Observe that by rescaling u → √

2γ u and taking the limit as γ → ∞
yields a delta function, a point that we come back to in § 4.3 and Appendix A. Furthermore,
the weak velocity amplitude limit u → 0 is also local.

To further explicate the conditional average procedure, we compare empirical
conditional averages of (2.10) and (2.11) (specialized to the present system) to the direct
conditionally averaged equations (3.36)–(3.38). Concretely, we use the flow field and
source term

u(x, y) = −
√

2 cos(x) sin( y)x̂ +
√

2 sin(x) cos( y)ŷ, (3.47)

s(x, y) = sin(x) sin( y) (3.48)

in a 2π periodic domain and γ = 1 for the transition rate. We employ a 2-D
pseudo-spectral Fourier discretization with 48 × 48 grid points and evolve both systems
to a time t = 25, which suffices for the flow and tracer to ‘forget’ its initial condition and
reach a statistically steady state. For the stochastic differential equation, we use 10 000
ensemble members. We emphasize that the turbulent diffusivity operator is independent
of the source term, and we make a choice for illustrative purposes.

Figure 4 summarizes the result of comparing two different calculation methods. To
compute the conditional averages, for example, Θ1 at time t = 25, we proceed as follows.
At the time t = 25, we tag all fields that are currently being advected by u1, add them
up and then divide by the number of ensemble members, which in the present case is
10 000. This sequence of calculations yields Θ1, shown in figure 4(a). The conditional
meansΘ2 andΘ3 are obtained similarly. We then calculate the conditional mean equations
directly in the bottom row. All fields are plotted with respect to the same colour scale. For
convenience, we also show the ensemble average, which here is 〈θ〉 = ϕ1 = Θ1 +Θ2 +
Θ3. The empirical averages have a slight asymmetry due to finite sampling effects. For
reference, the source and stream function of the flow field are shown in the last column of
the figure.

When the tracers are being advected by flow field u1, we see that the red in the stream
function corresponds to a counterclockwise flow and the blue to a clockwise flow. The
negative source concentration corresponding to the top left and bottom right parts of the
domain are then transported vertically, whereas the positive source, located in the top
right and bottom left of the domain, is transported horizontally. When advected by flow
field u3, the clockwise and counterclockwise roles reverse, and positive tracer sources
are transported vertically and negative tracer sources are transported horizontally. When
advected by u2 = 0, the conditional averages reflect the source term closely.
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Figure 4. Three-state system. Here, we show the stream function, source term, conditional averages and
the ensemble mean obtained using two different calculation methods. The first calculation method uses an
empirical average with 10 000 ensemble members, and the second method uses the equations from the text.
Both are shown at a final time of T = 25 time units where the statistical steady state has been reached.

Now that we have presented two examples, in the next section, we generalize by
expressing the turbulent diffusivity operator in terms of the spectrum of the generator.

4. General approach

The previous example had the following pattern:

(i) compute the eigenvectors of the generator Q;
(ii) transform the equations into a basis that diagonalizes Q;

(iii) separate the mean equation from the perturbation equations;
(iv) solve for the perturbation variables in terms of the mean variable.

Here we aim to gather the above procedure in the general case where we have access
to the eigenvectors of Q. Furthermore, in the last example, we claimed that the local
turbulent diffusivity approximation, as calculated by neglecting the effects of diffusion
and perturbation gradients, is equivalent to calculating the integrated auto-correlation of
the Markov process. We justify that claim in § 4.3.

4.1. Notation
Let us establish a notation for the general procedure. We again let Q denote the generator
with corresponding transition probability matrix P(τ ) given by the matrix exponential

P(τ ) = exp(τQ). (4.1)

The entries of the matrix [P(τ )]mn denote the transition probability of state n to the state
m. In each column of the transition matrix, the sum of the entries is one. We assume a
unique zero eigenvalue for Q with all other eigenvalues negative. We also assume that the
eigenvalues can be ordered in such a way that they are decreasing, i.e. λ1 = 0, λ2 < 0 and
λi ≤ λj for i > j with j ≥ 2. These choices result in a unique statistical steady state which
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we denote by the vector v1 with the property

Qv1 = 0v1 and P(τ )v1 = v1 for all τ, (4.2)

and similarly for the left eigenvector, w1. We denote the entries of v1 and w1 by column
vectors

v1 =

⎡⎢⎢⎣
P1
P2
...

PM

⎤⎥⎥⎦ and w1 =

⎡⎢⎢⎣
1
1
...

1

⎤⎥⎥⎦ , (4.3a,b)

where M is the number of states. We assume that the eigenvector v1 is normalized such
that

∑
m Pm = 1. Consequently, w1 · v1 = wT

1 v1 = 1. We introduce unit vectors êm whose
mth entry is zero and all other entries are zero, e.g.

ê1 =

⎡⎢⎢⎣
1
0
...

0

⎤⎥⎥⎦ , ê2 =

⎡⎢⎢⎣
0
1
...

0

⎤⎥⎥⎦ and êM =

⎡⎢⎢⎣
0
0
...

1

⎤⎥⎥⎦ . (4.4a–c)

Thus, v1 = ∑
m Pmêm, w1 = êm. Furthermore, êm · v1 = Pm and êm · w1 = 1 for each m.

For the discussion that follows, we will assume that the matrix Q has an eigenvalue
decomposition. In general, we denote the right eigenvectors of Q by vi for i = 1, . . . ,M
and the left eigenvectors by wi for i = 1, . . . ,M. These vectors are all associated with
eigenvalues λi for i = 1, . . . ,M, where i = 1 denotes the unique eigenvalue λ1 = 0.
We recall that the left eigenvectors can be constructed from the right eigenvectors by
placing the right eigenvectors in the columns of a matrix V , computing the inverse V−1

and extracting the rows of the inverse. The aforementioned procedure guarantees the
normalization wj · vi = wT

i vj = δij. Thus, we have the relations

Qvn = λnvn and wT
nQ = λnwT

n . (4.5a,b)

With notation now in place, we observe that the operators Q and P(τ ) are characterized
by their spectral decomposition

Q =
∑

i

λiviwT
i and P(τ ) =

∑
i

eτλiviwT
i . (4.6a,b)

We now introduce our Markov states as steady vector fields. The use of several vector
spaces imposes a burden on notation: the vector spaces associated with Markov states,
ensemble members and the vector field u. Instead of using overly decorated notation with
an excessive number of indices, we introduce the convention that u will always belong to
the vector space associated with the vector field, and all other vectors are associated with
the vector space of Markov states. For example, if we have two flow states u1 and u2, then[

u1(x) u2(x)
] [u1(x)

u2(x)

]
= u1(x)⊗ u1(x)+ u2(x)⊗ u2(x) (4.7)[

u1(x)
u2(x)

] [
u1(x) u2(x)

] =
[

u1(x)⊗ u1(x) u1(x)⊗ u2(x)
u2(x)⊗ u1(x) u2(x)⊗ u2(x)

]
(4.8)
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4.2. Spectral representation
With this notation now in place, the statistically steady equations

∇ · (umΘm) = κ�Θm + Pms +
∑

n

QmnΘn (4.9)

are represented as the matrix system∑
m

êm∇ · (umΘm) =
∑

m

êmκ�Θm + sv1 + Q
(∑

m

êmΘm

)
, (4.10)

where we made use of
∑

m êmPm = v1. We now re-express (4.10) in terms of a basis that
uses the eigenvectors of the transition matrix. Define components ϕn by the change of basis
formula ∑

m

Θmêm =
∑

n

ϕnvn ⇔
∑

n

ϕnên =
∑
mn

(wn · êm)ênΘm. (4.11)

We make the observation ϕ1 = 〈θ〉. We have the following relations based on the general
definitions of the left eigenvectors wn and right eigenvectors vn,

Θn =
∑

i

(ên · vi)ϕi and ϕn =
∑

m

(wn · êm)Θm. (4.12a,b)

Multiplying (4.10) by wT
j and making use of (4.12a,b), we get∑

n

(wj · ên)∇ · (unΘn) = κ�ϕj + δ1js + λjϕj (4.13)

⇒∑
n

(wj · ên)∇ ·
(

un

[∑
i

ên · viϕi

])
= κ�ϕj + δ1js + λjϕj (4.14)

⇒∑
in

(wj · ên)(ên · vi)∇ · (unϕi) = κ�ϕj + δ1js + λjϕj. (4.15)

We now wish to decompose (4.14) into a mean equation, index j = 1, and perturbation
equations, j > 1. For the mean equation, index j = 1, we make use of the properties

λ1 = 0, w1 · ên = 1, v1 · ên = Pn, and
∑

n

(w1 · ên)(ên · v1)∇ · (unϕ1) = ∇ · (〈ũ〉ϕ1〉
)

(4.16)
to arrive at (after changing summation index from n to m)

∇ · (〈u〉ϕ1)+ ∇ ·
⎡⎣ ∑
(i /= 1)m

(êm · vi)umϕi

⎤⎦ = κ�ϕ1 + s. (4.17)

We make the observation that the turbulent flux is

〈ũ′θ ′〉 =
∑

(i /= 1)m

(êm · vi)umϕi, (4.18)

and comment that the flow fields U i(x) ≡ ∑
m(êm · vi)um are the Koopman mode

amplitudes associated with eigenvalue λi. These are the relevant statistical spatial
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structures that advect the statistical perturbation variables ϕi. This is similar to how
the ensemble mean flow field advects the ensemble mean tracer concentration. Stated
differently, the perturbation variables are advected by structures associated with non-trivial
Koopman modes.

The perturbation equations, indices j > 1, are∑
in

(wj · ên)(ên · vi)∇ · (unϕi) = κ�ϕj + λjϕj for j > 1. (4.19)

We isolate the dependence on the mean gradients by rearranging the above expression as
follows for j > 1:∑

(i /= 1)n

(wj · ên)(ên · vi)∇ · (unϕi)− κ�ϕj − λjϕj = −
∑

n

Pn(wj · ên)∇ · (unϕ1) ,

(4.20)

where we used ên · v1 = Pn. Assuming that the operator on the left-hand side of (4.20) is
invertible, we introduce the Green’s function, Gij, to yield

ϕi = −
∫

dx′ ∑
( j /=1)n

Gij(x|x′)Pn(wj · ên)∇x′ · (un(x′)ϕ1(x′)
)

for i /= 1. (4.21)

Thus, we represent our turbulent flux as

〈ũ′θ ′〉 = −
∫

dx′ ∑
(i /= 1)( j /=1)mn

(êm · vi)um(x)Gij(x|x′)Pn(wj · ên)∇x′ · (un(x′)ϕ1(x′)
)
.

(4.22)

For compressible flow, the eddy-flux depends on both the ensemble mean gradients and
the ensemble mean value; otherwise, when each Markov state is incompressible,

〈ũ′θ ′〉 = −
∫

dx′ ∑
(i /= 1)( j /=1)mn

(êm · vi)um(x)Gij(x|x′)Pn(wj · ên)un(x′) · ∇x′ϕ1(x′),

(4.23)
in which case the turbulent diffusivity kernel is

K(x|x′) =
∑

(i /= 1)( j /=1)mn

(êm · vi)um(x)Gij(x|x′)Pn(wj · ên)un(x′). (4.24)

The above expression completes the procedure that we enacted for the examples in § 3.
We now discuss local approximations to the turbulent diffusivity operator.

4.3. Local approximation
We start with the same local diffusivity approximation of § 3.2 but using the spectral
representation of (2.13) and (2.14). In the perturbation equations, neglect the dissipation
operator and perturbation gradients, e.g. only include index i = 1, to yield the following
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reduction of (4.19), ∑
n

(wi · ên)Pn (un · ∇ϕ1) = λiϕi for i > 1, (4.25)

where we used (ên · v1) = Pn and have changed indices from j to i. We solve for ϕi for
i > 1 and focus on the perturbation flux term in (4.17),

〈ũ′θ ′〉 =
∑

(i /= 1)m

(êm · vi)umϕi, (4.26)

to get the local turbulent diffusivity estimate,

∑
(i /= 1)m

(êm · vi)umϕi =
∑

(i /= 1)m

(êm · vi)um

[
1
λi

∑
n

(wi · ên)Pn (un · ∇ϕ1)

]
(4.27)

=
⎡⎣ ∑
(i /= 1)mn

−1
λi
(êm · vi)(wi · ên)um ⊗ Pnun

⎤⎦
︸ ︷︷ ︸

D

·(−∇ϕ1). (4.28)

We aim to show that the turbulent diffusivity from (4.28),

D =
∑

(i /= 1)mn

−1
λi
(êm · vi)(wi · ên)um ⊗ Pnun, (4.29)

is equivalent to estimating the diffusivity by calculating the integral of the velocity
perturbation autocorrelation in a statistically steady state,

D =
∫ ∞

0
〈ũ′(x, t + τ)⊗ ũ′(x, t)〉 dτ. (4.30)

The above turbulent diffusivity is expected to work well in the limit that diffusive effects
can be neglected and the velocity field transitions rapidly with respect to the advective
time scale, see Appendix A. Under such circumstances, it is not unreasonable to think of
velocity fluctuations as analogous to white noise with a given covariance structure. For
example, letting ξ be a white-noise process and σ be a variance vector, if

ũ′(x, t) ≈ σ (x)ξ, where 〈ξ(t + τ)ξ(t)〉 = δ(τ ), (4.31)

then a diffusivity is given by

D(x) =
∫ ∞

0
〈ũ′(x, t + τ)⊗ ũ′(x, t)〉 dτ = σ (x)⊗ σ (x). (4.32)

Indeed, we will show that the intuitive estimate,

D(x) =
∫ ∞

0
〈ũ′(x, t + τ)⊗ ũ′(x, t)〉 dτ, (4.33)

does correspond to (4.29). Using the white-noise limit, one can take the advection term
in the tracer equation as a state-dependent noise term, in the Stratonovich sense, from
whence standard arguments follow. However, the current approach goes beyond this limit
by allowing for temporal correlations of the flow field.
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We begin with two observations. First, the statistically steady velocity field satisfies

〈ũ(x, t)〉 =
∑

m

Pmum(x), (4.34)

where um(x) for each m are the states of the Markov process. Second, recall that the vector
P(τ )ên is a column vector of probabilities whose entries denote the probability of being
found in state m given that at time τ = 0, the probability of being found in state n is one.
Thus, the conditional expectation of u(x, t + τ) given u(x, t) = un(x) is

〈ũ(x, t + τ)〉ũ(x,t)=un(x) =
(∑

m

um(x)êm

)T

P(τ )ên (4.35)

=
∑
im

eτλi(êm · vi)(wi · ên)um(x). (4.36)

Equation (4.35) expresses the conditional expectation as a weighted sum of Markov states
um(x).

We are now in a position to characterize the local turbulent diffusivity estimate. The
local turbulent diffusivity is computed by taking the long time integral of a statistically
steady flow field’s autocorrelation function, i.e.

D(x) =
∫ ∞

0
R(x, τ ) dτ, (4.37)

where
R(x, τ ) ≡ 〈ũ(x, t + τ)⊗ ũ(x, t)〉 − 〈u(x, t + τ)〉 ⊗ 〈u(x, t)〉. (4.38)

We calculate the second term under the statistically steady assumption of (4.38),

〈ũ(x, t + τ)〉 ⊗ 〈ũ(x, t)〉 =
(∑

m

Pmum(x)

)
⊗
(∑

n

Pnun(x)

)
. (4.39)

For the first term of (4.38), we decompose the expectation into conditional expectations,

〈ũ(x, t + τ)⊗ ũ(x, t)〉 =
∑

n

〈ũ(x, t + τ)⊗ ũ(x, t)〉ũ(x,t)=un(x)Pn. (4.40)

Given that we are in a statistically steady state, we use (4.35) to establish

〈ũ(x, t + τ)⊗ ũ(x, t)〉 =
∑

n

〈ũ(x, t + τ)⊗ ũ(x, t)〉ũ(x,t)=un(x)Pn (4.41)

=
∑
imn

eτλi(êm · vi)(wi · ên)um ⊗ Pnun. (4.42)

We isolate the i = 1 index and use λ1 = 0, êm · v1 = Pm, and w1 · ên = 1 to arrive at∑
mn

eτλ1(êm · v1)(w1 · ên)um ⊗ Pnun =
(∑

m

Pmum

)
⊗
(∑

n

Pnun

)
. (4.43)

Equation (4.43) cancels with (4.39) so that in total, we have the following characterization
of (4.38):

R(x, τ ) =
∑

(i /= 1)mn

eτλi(êm · vi)(wi · ên)um ⊗ Pnun. (4.44)
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Equation (4.44) is integrated to yield the local turbulent diffusivity,

D(x) =
∫ ∞

0
R(x, τ ) dτ =

∑
(i /= 1)mn

−1
λi
(êm · vi)(wi · ên)um ⊗ Pnun, (4.45)

where we used λi < 0 for i > 1. A comparison of (4.45) and (4.29) reveals the
correspondence. The expression on the right-hand side is related to the negative of
the Moore–Penrose inverse of generator Q. Thus, we see that estimating the diffusivity
through the velocity autocorrelation integral is equivalent to neglecting diffusive effects
and perturbation gradients. We further justify the local approximation as an asymptotic
‘white-noise’ limit and show to how connect the present class of stochastic models to that
of Kraichnan (1968) in Appendix A.

5. Advanced example: stochastic wave in a channel

Now that we have outlined the general theory, we apply it to a wandering wave in a channel.
The application is motivated by Flierl & McGillicuddy (2002), where the wave in question
is considered a Rossby wave. Consider the 2-D vorticity equation in a channel

∂tqω + {ψω, qω} = fω + ν�qω, (5.1)

�ψ = q, (5.2)

∂tθω + {ψω, θω} = s(x)+ κ�θω (5.3)

with a stochastic forcing fω and {a, b} = −∂ya∂xb + ∂xa∂yb. Here, x ∈ [0, 2π) is periodic
and y ∈ [0, 1] is wall bounded. No-flux boundary conditions for the tracer and stress-free
boundary conditions for the flow field on the wall y = 0, 1 are imposed. A solution to the
vorticity equation is

qω = −(1 + π2) sin (x + ϕω(t)) sin (πy) ⇒ ψω = sin (x + ϕω(t)) sin (πy) (5.4)

upon choosing

fω = ∂tqω − ν�qω and dϕω = c dt + ε
√

2 dWω. (5.5a,b)

The nonlinear term in the vorticity equation is zero since ψω ∝ qω, i.e. {ψω, qω} = 0. The
phase ϕ is a random walk with drift c in a 2π periodic domain. The wave propagates, on
average, to the left. For simulation purposes, we choose c = ε = 1 and κ = 0.01.

The conditional mean equations for the passive tracer are

∂tP = ∂ϕ

(
−cP + ε2∂ϕP

)
, (5.6)

∂tΘ + {ψ,Θ} = κ�Θ + s(x)P + ∂ϕ

(
−cΘ + ε2∂ϕΘ

)
, (5.7)

where Θ = Θ(x, ϕ, t) and ψ = sin(x + ϕ) sin(πy) with ϕ ∈ [0, 2π). Discretizing the
phase variable ϕ with a finite volume method in ϕ yields

∂tPm =
∑
m′

Qmm′Pm′, (5.8)

∂tΘm + {ψm,Θm} = κ�Θm + s(x)Pm +
∑
m′

Qmm′Θm′, (5.9)

where the details of the Qmm′ and ψm are given in Appendix C.3. Discretizing with a
spectral method for ϕ yields faster convergence to the continuous problem. However, the
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Figure 5. Ensemble mean channel comparison. We show the ensemble mean of the wandering wave as
compared to the six-state system and a local diffusivity estimate. For reference, we also show the source term,
scaled by a factor of 0.1 so as to be the same scale as the ensemble mean. A six-state system is visually similar
to the continuous empirical mean, and the local diffusivity estimate is dissimilar.

finite-volume discretization yields sequences of realizable stochastic processes in the form
of a Markov jump process between different flow fields.

For a local diffusivity, we use the auto-correlation of the velocity field,

K =
∫ ∞

0
dτ 〈ũ(x, t + τ)⊗ ũ(x, t)〉 = 1

4

[
π2 cos(πy)2 −π cos(πy) sin(πy)

π cos(πy) sin(πy) sin(πy)2

]
(5.10)

and calculate an approximate evolution equation

∂tϕ̃1 + ∇ · (−K∇ϕ̃1 − κ∇ϕ̃1) = s(x). (5.11)

We numerically solve both (5.1), the conditional mean equation (5.9) for increasing
number of states, and the local diffusivity equation, (5.11), for the particular choice of
source term,

s(x, y) = sin(x) sin(πy)+ cos(2x) sin(πy), (5.12)

which is shown in figure 5(c). We use a doubly periodic Fourier code with N = 32
grid points in a domain x ∈ [0, 2π) and y ∈ [0, 2), and note that no-flux and stress-free
boundary conditions at y = 0 and y = 1 are satisfied. We evolve all solutions to a final time
t = 10 and use 10 000 ensemble members for the stochastic evolution of the equations. We
choose to show the effect of the turbulent diffusivity indirectly via the choice of source
term and the ensemble mean rather than directly examining the structure of the exact
non-local tensor kernel for the present circumstance.

In addition, we show the ensemble mean of a six-state approximation to the kernel
in figure 5(a), the empirical ensemble mean in figure 5(b) and the local diffusivity
tensor results in figure 5(d). In the x ∈ [4, 5] region of the plot, we see that the shape
of the empirical ensemble mean is well captured by both the six-state approximation to
the ensemble mean as well as the local diffusivity estimate; however, the magnitude is
underestimated by the local diffusivity tensor. Furthermore, the local diffusivity tensor
fails to capture the structure and magnitude of the ensemble mean in the x ∈ [0, 3].
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Figure 6. Ensemble mean channel Error. Here we show the relative quantitative error between an N−state
approximation to the continuous process and the local diffusivity estimate. A six-state system is within the
sampling error for the chosen source term.

In contrast, the N = 6 state approximation captures the structure and magnitude
throughout the domain.

We quantify these statements with a relative L2 error metric in figure 6. The sampling
error is estimated by computing the difference in the empirical ensemble mean between
ensemble members 1 → 5000 and 5001 → 10 000, and dividing by the L2 norm of the
ensemble average of all the ensemble members. We see that increasing the number of
states increases the fidelity of the discrete representation and that the local diffusivity
yields a relative error of approximately 50 %. Furthermore, a six-state model (as given by
N = 6) captures the empirical ensemble mean within sampling error.

These errors are particular to the choice of source term and the resulting ensemble mean.
The advantage of using the exact closure relation for the passive tracer is its applicability
independent of the choice of source term in the tracer equation; however, a local diffusivity
tensor can likely be optimized to reduce the error for a fixed source term. Similarly, using
an N-state model could have different errors depending on the choice of source term, and
it is more expedient to examine convergence to the exact operator.

6. Conclusions

We have introduced a conditional averaging procedure for analysing tracers advected
by a stochastic flow and formulated the problem of finding a turbulence closure into
solving a set of partial differential equations. When the flow statistics are modelled as
a continuous-time Markov process with finite state space, the resulting system becomes
tractable to compute analytically. Furthermore, we show that flow statistics with infinite
state space can be approximated by ones with finite state space through a systematic
discretization.

The resulting dimensionality of the equations depended on the number of variables
required to describe flow statistics and the dimensionality of the flow. A flow characterized
by m discrete states leads to a set of m-coupled equations of the same dimensionality as
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the original. A flow characterized by a continuum of statistical variables can be discretized
and reduced to the former. Eliminating the system’s dependence on all but the ensemble
mean leads to an operator characterization of the turbulence closure, allowing for an
exploration of closures that do not invoke a scale separation hypothesis.

We analysed three examples – an Ornstein–Uhlenbeck process advecting a tracer in one
dimension, a three-state system in arbitrary dimensions and a stochastically wandering
wave in a 2-D channel – and outlined a general approach to obtaining a closure based
on the spectrum of the transition probability operator. In the examples, we examined
the role of non-locality in determining a statistically steady turbulence closure. Under
general principles, we derived that the small velocity amplitude, weak tracer diffusivity
and fast transition rate limit reduce the closure to a spatially heterogeneous tensor acting
on ensemble mean gradients. Furthermore, we related this tensor to the time-integrated
auto-correlation of the stochastic flow field.

We have not exhausted the number of examples the formulation offers nor
simplifications leading to analytically tractable results. Interesting future directions
include using Markov states estimated directly from turbulence simulations, analysing
scale-separated flows, generalizing the advection-diffusion equation to reaction-advection-
diffusion equations, and formulating optimal mixing problems. When the number of
Markov states increases, the computational burden of estimating turbulent diffusivity
operators becomes demanding; thus, there is a need to develop methods that exploit the
structure of the problem as much as possible.

Mathematically, there are many challenges as well. All the arguments provided here are
formal calculations, and the necessity for rigorous proofs remains. For example, a direct
proof of the conditional averaging procedure is necessary. Ultimately, the goal is to reduce
the stochastic-advection turbulence closure problem to one that can leverage theory from
partial differential equations.

Supplementary material. Supplementary material is available at https://github.com/sandreza/
StatisticalNonlocality.
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Appendix A. White-noise limit and the Kraichnan ensemble

Here we wish to show how the considerations taken in the main text, specifically § 4.3,
relate to Kraichnan’s work with white noise in time and Gaussian process in space flow
fields, see Kraichnan (1968). We will proceed in two steps. In the first step, we show how
to take a ‘white-noise’ limit of an arbitrary set of flow fields un and generators Q so that the
time-integrated velocity auto-correlations stay finite. This procedure has been commented
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on by both Kraichnan (1968) and Falkovich et al. (2001) as a necessary step to remove the
stochastic ambiguity of a delta-correlated in time flow field. In the second step, we show
how to discretize a Gaussian process to a finite state space.

Introduce a scale parameter γ for each velocity state and the generator Q as

un(x) �→ √
γun(x) and Q �→ γQ. (A1a,b)

The integrated velocity autocorrelation remains invariant since the characteristic velocity
scales like U = O(

√
γ ), the characteristic time scale scales like τ = O(γ−1) and thus

the integrated velocity autocorrelation is U2τ = O(1) as γ → ∞; however, the mean free
path of a particle is now 	 ∝ Uτ = O(1/

√
γ ) and goes to zero in the limit. This limit

yields a delta-correlated flow field in time as γ → ∞.
From (4.20), we have the exact relation as γ → ∞ for j /= 1,∑

(i /= 1)n

(wj · ên)(ên · vi)∇ · (√γun︸ ︷︷ ︸
O(

√
γ )

ϕi)− κ�︸︷︷︸
O(1)

ϕj − γ λj︸︷︷︸
O(γ )

ϕj

= −
∑

n

Pn(wj · ên)∇ · (√γun︸ ︷︷ ︸
O(

√
γ )

ϕ1). (A2)

Since the integrated autocorrelation of velocity is independent of γ , we assume ϕ1 =
O(1), which yields the leading order balance

γ λj︸︷︷︸
O(γ )

ϕj ≈
∑

n

Pn(wj · ên)∇ · (√γunϕ1)︸ ︷︷ ︸
O(

√
γ )

. (A3)

The above relation was assumed in (4.25) but is now justified as a particular asymptotic
limit. Consequently, ϕj = O(1/

√
γ ) as γ → ∞ for j /= 1. Hence, the perturbation terms

are small, consistent with the requirements of a local diffusivity estimate. We note that the
assumption ϕ1 = O(1) is self-consistent. These calculations complete the first step.

We have seen how to rescale and take limits to get a local diffusivity estimate from an
arbitrary Q matrix and velocity states. The only additional ingredient to connect the present
work to the Kraichnan ensemble is to observe that a Gaussian process is a structured
matrix version of Q with particular choices for the velocity states. The Karhunen–Loéve
expansion implies that the Gaussian process velocity field (at a fixed time t) is represented
as

uω(x, t) =
∞∑

n=1

Aωn(t)Φn(x), (A4)

where each Aωn(t) is, for example, an independent Ornstein–Uhlenbeck process (although
any process with a Gaussian stationary distribution will suffice) with integrated
autocorrelation one and Φn(x) are eigenvectors of the covariance tensor associated with
the Gaussian process. They satisfy the relation∫

Ω

dxΦn(x) · Φm(x) = Λnδnm, (A5)

where Λn are the eigenvalues of the covariance tensor.
We now show how to express the above infinite-dimensional state space as a limit of the

finite-dimensional ones. Represent each amplitude Aωn as an N-state model with transition
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matrix Q̃ (as was done for the Ornstein–Uhlenbeck process) and observe that each one
is independent. The Q matrix becomes a Kronecker sum of infinitely many copies of the
same Q̃. In practice, this infinite Kronecker sum is truncated to a finite number, let us
say the first M of them as ordered by the eigenvalues Λn of the covariance tensor. The
resulting discrete states are then given by the product of N possible modal amplitudes for
a fixed basis function Φ with M total number of independent modes, hence, an NM finite
dimensional space. More concretely, if we discretize with three modal amplitudes and each
modal amplitude with a two-state system, then each amplitude is either +1 or −1, leading
to a total possible 23 = 8 pairings, e.g.

u1 = Φ1(x)+ Φ2(x)+ Φ3(x), u2 = −Φ1(x)+ Φ2(x)+ Φ3(x), (A6a,b)

u3 = Φ1(x)+ Φ2(x)− Φ3(x), u4 = −Φ1(x)+ Φ2(x)− Φ3(x), (A7a,b)

u5 = Φ1(x)− Φ2(x)+ Φ3(x), u6 = −Φ1(x)− Φ2(x)+ Φ3(x), (A8a,b)

u7 = Φ1(x)− Φ2(x)− Φ3(x), u8 = −Φ1(x)− Φ2(x)− Φ3(x) (A9a,b)

and the Kronecker sum matrix

Q̃ = 1
2

[−1 1
1 −1

]
, (A10)

Q = Q̃ ⊕ Q̃ ⊕ Q̃ = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 1 1 0 1 0 0 0
1 −3 0 1 0 1 0 0
1 0 −3 1 0 0 1 0
0 1 1 −3 0 0 0 1
1 0 0 0 −3 1 1 0
0 1 0 0 1 −3 0 1
0 0 1 0 1 0 −3 1
0 0 0 1 0 1 1 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A11)

where each transition corresponds to a single sign flip of the Gaussian process basis
functions that constitute the velocity states.

Given that our analysis was performed for an arbitrary-sized Q matrix, we use finite
truncations and then take limits afterward. Note the order of the limits taken: first, truncate
to a finite state space, next, take the white noise limit, then lastly, take the limit to the
infinite state space. Those limits, taken in that order, yield the same model as that of
Kraichnan (1968).

Appendix B. An alternative formal derivation

We wish to show that one can work directly with the continuous formulation of the
advection-diffusion equations for the derivation of the conditional mean equations.
Although we consider a finite (but arbitrarily large) number of Markov states here,
considering a continuum follows mutatis mutandi. In § 2, we wrote down the master
equation for the discretized stochastic system as

∂tρm =
∑

i

∂

∂θ i

⎡⎣⎛⎝∑
jkc

Ac
ijkuk,c

m θ j −
∑

j

Dijθ
j − si

⎞⎠ ρm

⎤⎦ +
∑

n

Qmnρn. (B1)
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We introduce the (spatial) volume element �xi to rewrite (B1) in the evocative manner,

∂tρm =
∑

i

�xi
1
�xi

∂

∂θ i

⎡⎣⎛⎝∑
jkc

Ac
ijkuk,c

m θ j −
∑

j

Dijθ
j − si

⎞⎠ ρm

⎤⎦ +
∑

n

Qmnρn. (B2)

We now take limits ∑
i

�xi
‘lim’=

∫
dx, (B3)

1
�xi

∂

∂θ i
‘lim’= δ

δθ(x)
, (B4)∑

jkc

Ac
ijkuk,c

m θ j +
∑

j

Dijθ
j − si ‘lim’= um · ∇θ − κ�θ − s, (B5)

to get the functional evolution equation for the probability density,

∂tρm =
∫

dx
δ

δθ(x)
([um · ∇θ − κ�θ − s] ρm)+

∑
n

Qmnρn, (B6)

where x is a continuous index. The notation here is similar to that of Zinn-Justin (2021,
§ 35). As before, we can derive the conditionally averaged equations directly from the
above. To do so, we make the additional correspondence

dθ
‘lim’= D[θ ]. (B7)

We now define the same quantities as before, but using the field integral

Pm ≡
∫

D[θ ]ρm and Θm( y) ≡
∫

D[θ ]θ( y)ρm. (B8a,b)

The discrete indices i, j, k in the equations from § 2 are replaced by continuous labels x
and y. We only use a few formal properties of the field integral, with direct correspondence
to n-dimensional integrals. We use linearity, i.e. for two mappings with compatible ranges
F [θ ] and H[θ ], ∫

D[θ ] (F [θ ] + H[θ ]) =
∫

D[θ ]F [θ ] +
∫

D[θ ]H[θ ]. (B9)

We use the analogue to the divergence theorem,∫
D[θ ]

∫
dx

δ

δθ(x)
([um · ∇θ − κ�θ − s] ρm) = 0 (B10)

⇔∫
dθ∇θ · ( f ρ) = 0 (B11)

since the integral of a divergence should be zero if the probabilities vanish at infinity (i.e.
that our tracer cannot have infinite values at a given point in space). We also make use of
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the integration by parts, i.e. for some functionals F and H,∫
D[θ ]H

∫
dx

δ

δθ(x)
F = −

∫
D[θ ]

∫
dx

δH
δθ(x)

F (B12)

⇔∫
dθh∇θ · f = −

∫
dθ (∇θh) · f . (B13)

And finally, we also interchange sums and integrals,∫
D[θ ](�θ)ρm = �

∫
D[θ ]θρm = �Θm (B14)

⇔∫
dθ

⎛⎝∑
j

D	jθ jρm

⎞⎠ =
∑

j

D	j

∫
dθθ jρm =

∑
j

D	jΘ j
m. (B15)

We proceed similarly for the um · ∇ term. We also use properties of the variational
derivative, such as,

δθ( y)
δθ(x)

= δ(x − y) ⇔ ∂θ	

∂θ i = δ	i. (B16)

Taken together, one can directly obtain (2.13) and (2.14) by first integrating (B6) with
respect to D[θ ] to get

∂tPm =
∑

n

QmnPn, (B17)

and multiplying (B6) by θ( y) and then integrating with respect to D[θ ] to get

∂tΘm( y, t)+ ∇y · (um( y)Θm( y, t)− κ∇yΘm( y, t)
) = s( y)Pm +

∑
n

QmnΘn( y, t).

(B18)

In the above expression, removing explicit dependence of the position variable yields

∂tΘm + ∇ · (umΘm − κ∇Θm) = sPm +
∑

n

QmnΘn. (B19)

Our reason for mentioning the above methodology is that it allows for expedited
computations. There is no need to explicitly discretize, perform usual n-dimensional
integral manipulations and then take limits afterward. For example, computing the
conditional two-moment equations defined by the variable

Cm( y, z, t) ≡
∫

D[θ ]θ( y)θ(z)ρm (B20)

is obtained by multiplying (B6) by θ( y) and θ(z), and integrating with respect to D[θ ],

∂tCm + ∇y · (um( y)Cm − κ∇yCm
) + ∇z · (um(z)Cm − κ∇zCm)

= s(z)Θm( y)+ s( y)Θm(z)+
∑

n

QmnCn. (B21)
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In particular, we note the source term on the right-hand side and the appearance of the first
conditional moment. In the derivation, we used the product rule

δ(θ( y)θ(z))
δθ(x)

= δ(x − y)θ(z)+ δ(x − z)θ( y). (B22)

If the advection-diffusion equation is m-dimensional and we have N Markov states, the
above equation is made up of N coupled 2m dimensional partial differential equations.
Indeed the equation for the Mth moment is made up of N coupled M × m dimensional
partial differential equations.

Appendix C. A heuristic overview of the master equation and discretizations

In this section, we provide an argument for the form of the master equation in the main
text, (2.18) in § 2. Our starting point is § C.1, where we use the Liouville equation for
two continuous variables. We then apply the finite volume method to the Fokker–Planck
equation of an Ornstein–Uhlenbeck process to derive the transition matrices used in the
two-state and three-state systems in § 3. We conclude with a formal argument for the use of
discrete Markov states as an approximation to the compressible Euler equations in § C.4.

C.1. Two-variable system
Suppose that we have two variables x, y ∈ R governed by the equations

dx
dt

= f (x)+
√

2σξ, (C1)

dy
dt

= g(x, y), (C2)

where ξ is white noise. In this context, we think of x as being our flow field u and y as the
tracer θ . The master equation implied by the dynamics is

∂tρ = −∂x

(
f (x)ρ − σ 2∂xρ

)
− ∂y (g(x, y)ρ) . (C3)

We now discretize the equation with respect to the x−variable by partitioning space
into non-overlapping cells, characterized by domains Ωm. First, we start with the
Fokker–Planck equation for x, which is independent of the y−variable,

∂tP = −∂x

(
f (x)P − σ 2∂xP

)
. (C4)

Observe the relation
∫
ρ(x, y, t) dy = P(x, t). Define our coarse grained variable Pm as

Pm ≡
∫
Ωm

P(x) dx, (C5)

which is a probability. Thus, the discretization of (C4) becomes

∂t

∫
Ωm

P dx = −
∫
Ωm

∂x

(
f (x)P − σ 2∂xP

)
dx (C6)

≈
∂tPm =

∑
n

QmnPn (C7)
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for a generator Q which we derive in (C.2) with respect to a chosen numerical flux.
Heuristically, going from (C6) to (C7) is accomplished by observing that Pm is a
probability and the operator L ≡ ∂x( f (x) • −σ 2∂x•) is linear; thus, upon discretization,
the operator is represented a matrix acting on the chosen coarse grained variables Pn. (It
is, of course, possible to approximate using a nonlinear operator, but for simplicity, we
only consider the linear case.) The property

∑
m Qmn = 0 is the discrete conservation of

probability.
Going back to (C3), defining

ρm( y) ≡
∫
Ωm

ρ(x, y) dx, (C8)

introducing xm ∈ Ωm, and performing the same discretization for the joint Markov system
yields

∂tρm =
∑

n

Qmnρn − ∂y (g(xm, y)ρm) , (C9)

where we used the approximation∫
Ωm

g(x, y)ρ(x, y) dx ≈ g(xm, y)
∫
Ωm

ρ(x, y) dx = g(xm, y)ρm( y). (C10)

The xm are the Markov states and the Qmn serves as the specification for transitioning
between different states. We also observe that one can simply start with the discrete states
for x and continuous variables for y to directly obtain (C9), as was done in the main text.

In what follows, we give a concrete example of deriving a generator Q from a
finite-volume discretization of an Ornstein–Uhlenbeck (OU) process. We explicitly
mention the kind of discretization that we use since retaining mimetic properties of
the generator Q is not guaranteed with other discretizations. Furthermore, using a
finite volume discretization allows for the resulting discretization to be interpreted as a
continuous-time Markov process with a finite state space.

C.2. Example discretization
Consider an Ornstein–Uhlenbeck process and the resulting Fokker–Planck equation,

∂tρ = −∂x (−xρ − ∂xρ) . (C11)

We discretize the above equation with N + 1 cells, where N = 1 and N = 2 correspond
to the two- and three-state systems, respectively. Using a finite volume discretization, we
take our cells to be

Ωm = [�x (m − 1/2 − N/2) ,�x (m + 1/2 − N/2)], (C12)

�x = 2√
N

(C13)

for m = 0, 1, . . . ,N. Our choice implies that cell centres (the discrete Markov states) are

xm = �x(m − N/2) (C14)

for m = 0, . . . ,N, and cell faces are

x f
m = �x(m − 1/2 − N/2) (C15)
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for m = 0, . . . ,N + 1. We define

Pm =
∫
Ωm

ρ dx and ρ̄m�x = Pm. (C16a,b)

Upon integrating with respect to the control volume, we obtain

d
dt
Pm = − (−xρ − ∂xρ)|x=x f

m
+ (−xρ − ∂xρ)|x=x f

m+1
. (C17)

The numerical flux is chosen as follows:

(−xρ − ∂xρ)|x=x f
m

≈ −xm−1ρ̄m−1 + xmρ̄m

2
− ρ̄m − ρ̄m−1

�x
(C18)

= −xm−1Pm−1 + xmPm

2�x
− Pm − Pm−1

(�x)2
(C19)

= 1
2
((N − m + 1)Pm−1 − mPm) , (C20)

where we use the convention P−1 = PN+1 = 0 so that boundaries, corresponding to
indices m = 0 and m = N + 1, imply no flux conditions. Combining the flux estimates
for both cell boundaries, the evolution equation for the probabilities Pm becomes

∂tPm = 1
2

[
(N − m + 1)Pm−1 − NPm + (m + 1)Pm+1

]
, (C21)

which implies the generator

Qmn = 1
2

(−Nδmn + nδ(m+1)n + (N − n)δ(m−1)n
)
. (C22)

Equation (C21) emphasizes the row structure of the matrix whereas (C22) emphasizes the
column structure. The steady state probability distribution is the binomial distribution

Pm = 2−N
(

N
m

)
. (C23)

(The continuous steady state distribution is a Normal distribution ρ(x) = (2π)−1/2

exp(−x2/2).) Furthermore, the eigenvectors and eigenvalues of the matrix are in
correspondence with the eigenfunctions and eigenvalues of the Ornstein–Uhlenbeck
process as noted by Hagan et al. (1989). In particular, the cell centre vector, (C26), is a
left eigenvector of Qmn with eigenvalue λ = −1. This relation is useful for calculating the
auto-correlation of the Markov process since (4.35) only involves one eigenvalue. We used
the generator, (C22), in the construction of the two- and three-state systems.

C.3. Example discretization 2
Consider a random walk with drift in a periodic domain and the resulting Fokker–Planck
equation,

∂tρ = −∂ϕ
(
ρ − ∂ϕρ

)
. (C24)

We use control volumes,

Ωm = [m�ϕ, (m + 1)�ϕ] and �ϕ = 2π

N
(C25)
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for m = 0, 1, . . . ,N − 1. Our choice implies that cell centres are

ϕm = �ϕ(m + 1/2) (C26)

for m = 0, . . . ,N − 1, and cell faces are

ϕ f
m = m�ϕ (C27)

for m = 0, . . . ,N − 1. Using a central flux for the advective term, the standard flux for the
diffusive term, and accounting for periodicity yields the matrices

A(i∓1)%N+1,i%N+1 = ±1/2, Di,i = −2 and D(i±1)%N+1,i%N+1 = 1 (C28)

for i = 1, . . . ,N and zero otherwise. Here, % is the modulus operation and accounts for
super/sub diagonals of the matrices along with periodicity.

The transition matrix is then

Qmn = 1
�ϕ

Amn + 1
�ϕ2 Dmn. (C29)

With regards to the calculations in § 5, we take our stream function states to be

ψm = cos(x + m�ϕ) sin(πy) (C30)

for m = 0, 1, . . . ,N − 1.

C.4. A finite volume approximation in function space
We start with the compressible Euler equations

∂tρ + ∇ · (ρu) = 0, (C31)

∂tρu + ∇ · (ρu ⊗ u)+ ∇p = 0, (C32)

∂tρe + ∇ · (u [ρe + p
]) = 0, (C33)

p(ρ, ρu, ρe) = p, (C34)

where ρ is density, ρu is the momentum, u = ρu/ρ is the velocity, ρe is the total energy
density and p is a thermodynamic pressure. (For example, one could use the pressure
for an ideal gas p = (γ − 1)(ρe − ρ|u|2/2) with γ = 7/5.) Here, we introduce Z as a
probability density in function space for the state variables S ≡ (ρ, ρu, ρe). In the notation
of Appendix B, the evolution equation for the statistics Z are

∂tZ =
∫

dx
[
δ

δρ
(∇ · [ρu] Z)+ δ

δρu
(∇ · [ρu ⊗ u] Z + ∇pZ)

+ δ

δρe

(∇ · (u [ρe + p
])

Z
)]
, (C35)

where we have suppressed the index x in the variational derivatives.
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Statistical non-locality of dynamically coherent structures

Now consider a partition in function space into domains Ωm and let Sm denote a value
of a state within the set Sm. In this case, we define the probability as

Pm ≡
∫
Ωm

D[ρ]D[ρu]D[ρe]Z. (C36)

In analogy with the calculations in § C.2, integrating (C35) with respect to a control
volume Ωm would result in an approximation of the form

∂tPm =
∑

n

QmnPn (C37)

for some generator Qmn. The entries of the generator are functionals of the states Sm ∈ Ωm.
Performing the necessary integrals and re-expressing it in this finite form is done indirectly
through data-driven methods with time series as in Klus, Koltai & Schütte (2016), Fernex,
Noack & Semaan (2021) or Maity, Koltai & Schumacher (2022).

The difficulty of performing a discretization from first principles comes from choosing
the subsets of function space to partition and carrying out the integrals in function space.
Periodic orbits and fixed points of a flow serve as a natural skeleton for function space, but
are typically burdensome to compute. We offer no solution, but hope that in the future,
such direct calculations are rendered tractable. In the meanwhile, indirect data-driven
methods are the most promising avenue for the calculation of the generator Q.
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