
1.  Introduction
Soil background albedo serves as the lower boundary condition of vegetation radiative transfer schemes 
in Earth system models (ESMs). In most ESMs, soil albedo is treated as fixed values in two spectral broad-
bands, namely, the photosynthetically active radiation band (PAR, 400–700  nm) and the near infra-red band 
(NIR, 700–2,500 nm). These two broadbands are resolved by efficient radiative transfer schemes in the land 
component of current ESMs, the so-called two-stream scheme (Braghiere et al., 2019; Sellers, 1985). However, 
recent advances in imaging spectroscopy have allowed for better modeling of hyperspectral reflectance of the 
canopy-soil system (Braghiere et al., 2021a; Jiang & Fang, 2019). In addition, particular wavelengths within the 
PAR spectrum have varying quantum yields, impacting photosynthesis and transpiration differently (Cernusak 
& Kauwe, 2022; Liu & van Iersel, 2021). Hyperspectral data can also be used to map different vegetation prop-
erties, such as canopy water content, leaf nitrogen and phosphorus compositions (Knyazikhin et al., 2013), and 
a range of traits related to photosynthesis, respiration, and decomposition of plant material (Butler et al., 2017; 
Cawse-Nicholson et al., 2021). However, current ESMs usually cannot calculate radiative transfer at a high spec-
tral resolution (∼10 nm) (Poulter et  al.,  2023), which limits their ability to utilize the additional information 
provided by hyperspectral measurements for model calibration (Braghiere et al., 2021a).

Recent developments have moved away from the broadband approach, allowing for direct inversion of ecosys-
tem properties from high spectral resolution remotely sensed data (Dutta et  al.,  2019) and reducing uncer-
tainty in surface albedo (Majasalmi & Bright, 2019). However, these advances require explicit information of 
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Plain Language Summary  Due to computational and observational constraints, scientists must 
make approximations when modeling the climate system. One simplification is to reduce soil background 
albedos to two broad spectral bands, which can cause biases in climate models by not fully accounting for the 
changing color of sunlight throughout the day. The limitations of the broadband approximation also affect 
predictions of the global carbon and water cycles due to differences in radiation absorbed by vegetation.
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hyperspectral soil reflectance globally and at spatial resolutions as high as 50 km. Currently, ESMs determine 
soil background albedo through optimization methods (“soil colors”) to replicate remote sensing observations of 
snow-free surface albedo at local noon (P. J. Lawrence & Chase, 2007), which may conceal compensating errors. 
However, broadband radiative transfer schemes are used to calculate the model equivalent surface albedo based 
on climatological monthly soil moisture along with vegetation parameters of plant functional types, leaf area 
index (LAI), and stem area index (SAI), generating highly parameterized global maps of soil albedo with two 
associated fixed values (PAR and NIR reflectances), with a strong spectral discontinuity at 700 nm (Figures 1a 
and 1b).

Global data sets of soil spectroscopy (Viscarra Rossel et al., 2016) and new hyperspectral soil algorithms (Jiang 
& Fang, 2019) allow the development of continuous soil reflectance curves across the shortwave radiation spec-
trum (400–2,500 nm). This capability enables global calculations using hyperspectral radiative transfer schemes 
in ESMs. Moreover, differences in soil albedo between the highly resolved and more coarsely resolved spectral 
curves highlight systematic divergences in surface albedo and radiative forcing. These divergences in surface 
reflectance propagate into other radiative partitioning terms, such as absorptance and transmittance, impacting 
sun-induced fluorescence (Braghiere et al., 2021a), photosynthesis (Braghiere et al., 2020a), and evapotranspi-
ration (Viskari et al., 2019).

We aim to demonstrate sensitivity and quantify biases in surface albedo and following divergences in radiative 
forcing globally, by focusing on soils in a desert scheme without vegetation. We also investigate how the addition 
of vegetation on top of soils worldwide affects canopy reflectance and the resulting radiative forcing at the top of 
the atmosphere (TOA). To address these questions, we compare a global hyperspectral land model, CliMA-Land 
(Braghiere et al., 2021a; Wang et al., 2021), using a broadband representation of soil albedo to one that is hyper-
spectrally resolved. Our analyses involve a few different scenarios, including a global desert scheme with barren 
soil, an actual simulation with vegetation on top of the soil, and the photosynthetic response of the land surface, 
which is driven by differences in the amount of absorbed radiation by the vegetation.

Furthermore, we perform coupled atmosphere-land simulations with an ESM to evaluate the impacts of blue 
versus red light on surface fluxes and climatological variables in the present climate and under the influence of 
elevated CO2. Particles in the atmosphere smaller than the incident electromagnetic radiation induce Rayleigh 
scattering, where short wavelengths (blues) are scattered more efficiently than long wavelengths (reds); this is 
the effect that gives the sky its blue hue. At large solar zenith angles (>60°), light must pass through more atmos-
pheric mass, leading to blue light being scattered out and making the sky appear red. Rayleigh scattering effects 
mean that longer wavelengths make up a higher portion of incident PAR (Kravitz et al., 2012), the implications of 
which cannot be estimated by ESMs with only two broad spectral bands. Diurnal variations in the red/blue ratio 
of incoming PAR are usually accounted for by atmospheric radiative transfer models, but not by the broadband 
land surface radiative transfer model, which might cause diurnal shortwave forcing divergences.

The aim of this study is to show how incorporating a more continuous, hyperspectral representation of shortwave 
soil albedo affects the surface radiative forcing and simulations of the carbon and water cycles in ESMs. The 
objectives of the study are to estimate soil albedo biases between hyperspectral and broadband representations, 
to identify the spectrally integrated radiative forcing divergences between both cases, and to analyze the impacts 
of these differences on global energy, water and carbon fluxes. By achieving these objectives, the study enables 
the incorporation of hyperspectral soil background albedo information in ESMs, which will reduce uncertainty 
in surface reflectance.

2.  Methods
2.1.  Global Map of Hyperspectral Albedo

Soil albedo depends on soil intrinsic characteristics (e.g., mineral composition, color, organic matter, soil rough-
ness) and extrinsic characteristics, such as volumetric water content. The soil color and water dependencies are 
usually modeled empirically in land surface models in two broadbands. In this study, we represent the effects 
of soil color and water content globally at high spectral resolution using a combination of the Community 
Land Model version 5 (CLM5) soil color scheme (P. J. Lawrence & Chase, 2007; D. M. Lawrence et al., 2019) 
and the General Spectral Vector (GSV) soil albedo model (Jiang & Fang, 2019) based on previous work by 
Condit (1972) and Price (1990). The GSV model simulates hyperspectral soil reflectance from multispectral 
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soil reflectance by fitting a discrete number of coefficients associated with known soil albedo values at differ-
ent wavelengths to a linear combination of known spectral vectors. The spectral vectors were derived from dry 
and humid observed soil reflectance data, which included 23,871 soil spectra from 400 to 2,500 nm, using a 
common matrix decomposition method. Four vectors were provided, three of which are from databases for 
completely dry soils (υdryi), and one vector from databases for soils at different humidity levels (υwet). Soil 
albedo was modeled as a linear combination of i = 1, …, 4 spectral vectors and their associated coefficients 
cdryi and cwet.

The broadband spectral curve needed to fit the GSV coefficients was obtained from the global soil color map in 
CLM5 (see Supporting Information S1). The soil moisture function was modified as follows:

𝛼𝛼band = 𝛼𝛼band,dry ⋅ (1 − 𝜃𝜃) + 𝛼𝛼band,wet ⋅ (𝜃𝜃)� (1)

where band corresponds to PAR or NIR, either dry or wet (saturated) in Table S1 in Supporting Information S1, 
and θ is the volumetric soil water content (m 3 m −3) at the top of the soil (0–7 cm, the surface is at 0 cm) from 
ERA5 (Hersbach et al., 2020).

The fitting method minimizes the sum of the square error of: (a) two GSV vectors fitting points (2P); (b) two GSV 
vectors fitting curves (2C); (c) two GSV vectors, fit-ting one point and one curve, or hybrid method (2H); (d) four 
GSV vectors fitting two curves (4C); and (e) four GSV vectors fitting a point for PAR and a curve for NIR (4H). 
“Point” refers to when the whole spectral window (either PAR or NIR) are considered single points (the average), 
“curve” refers to when the whole spectral window (either PAR or NIR) are considered flat lines (on the average), 
and “hybrid” means the PAR albedo was considered a point and the NIR albedo was considered a flat line. The 
associated numbers indicate how many GSV vectors were used in the fitting method. A detailed description of 
the method is given in Note S1 in Supporting Information S1.

All four GSV vectors were used to upscale two broadbands into a hyperspectral curve using a hybrid methodol-
ogy, where the PAR albedo was considered a point and the NIR albedo was considered a flat line. See Supporting 
Information S1 for a diagram of the fitting method.

Figure 1.  (a) Global average broadband soil albedo following the “soil color” scheme presented in P. J. Lawrence and Chase (2007) at 1° spatial resolution and the 
equivalent hyperspectral soil albedo calculated following the hybrid method (see Section 2) based on all four spectral vectors of the General Spectral Vector model 
(Jiang & Fang, 2019). (b) Difference between the continuous hyperspectral soil albedo and the discontinuous broadband albedo (∆αs). Global spatial deviations between 
the hyperspectral and the broadband cases in (c) blue (404–504), (d) red (624–697), and (e) far-red (702–747 nm) spectral regions, respectively.
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2.2.  Reanalysis Data

The total surface downward shortwave radiation flux (SW), the direct (clear-sky) surface downward shortwave 
radiation flux (SWdir), and the incoming solar radiation flux at TOA were extracted from the fifth generation 
ECMWF global reanalysis, ERA5 (Hersbach et al., 2020) for 2020. The diffuse surface downward radiation flux 
was calculated as the difference between the total and the direct fluxes at the surface. The spectral atmospheric 
transmissivity was calculated as the ratio between SW and the downward shortwave radiation flux at TOA (

𝐴𝐴 𝐴𝐴
↓

TOA
 ). The volumetric soil water content (m 3 m −3) at the top of the soil from ERA5 was used to calculate changes 

in soil albedo due to soil moisture following Equation 1.

2.3.  Field Sites

Hyperspectral soil reflectance was acquired with a GER 3700 spectroradiometer (Geophysical Environ. Res. 
Corp., Millbrook, NY) over the 400–2,500 nm wavelength region at 1.5 nm intervals in the 400–1,050 nm region 
and at 9 nm intervals in the region >1,050 nm taken from Lobell and Asner (2002). The samples were illuminated 
by two 300 W quartz-halogen lamps mounted on the arms of a camera copy stand 50 cm above the sample at a 
45° illumination zenith angle. The spectroradiometer was positioned 40 cm from the sample surface at a 0° view 
zenith angle. With the 3° optics on the spectroradiometer, the diameter of the field of view at the sample was 
2.1 cm. The illumination and view angles were chosen to minimize shadowing and emphasize the fundamental 
spectral properties of the soils.

Five topsoil samples were used in this study and provided a range of colors and textures (Table S2 in Supporting 
Information S1). Spectral data were acquired at nine evenly spaced locations on each sample. After acquiring the 
spectral reflectance data from the oven-dried soils, the soils in the trays were saturated with water. The relative 
water content was calculated as the water content divided by the maximum water content of each sample. For 
further details on data acquisition refer to Daughtry (2001).

2.4.  AVIRIS and SMAP Data

As part of Western Diversity Time Series, the Airborne Visible Infrared Imaging Spectrometer “Classic” 
(AVIRIS-C) was flown on the ER-2 high-altitude research aircraft in Niland, Southern California (33.2°N, 
115.1°W) on 25 June 2018 around 18:00 UTC. AVIRIS-C is a whiskbroom spectrometer that measures radi-
ance from 380 to 2,500 nm with a spectral sampling of approximately 10 nm, for a total of 224 contiguous 
bands (Green et al., 1998). The hemispherical-directional reflectance factor was estimated using an open-source 
implementation of optimal estimation, Isofit v2.9.2, accelerated with radiative transfer and local atmospheric 
emulation (Brodrick et al., 2021; Thompson et al., 2018, 2020). Ten flight lines were mosaicked together, and 
three sites were selected in areas with relatively low vegetation cover (less than 5%), as determined by spectral 
mixture analysis.

Unlike the laboratory spectra, AVIRIS data were acquired under natural conditions, which will have included the 
effects of soil surface crusts/seals and soil roughness and shadows. These factors can significantly influence the 
reflectance spectra of soils, especially in the shortwave infrared region (Boardman et al., 1995; Goetz et al., 1985; 
Roberts et al., 1998). Therefore, the AVIRIS reflectance spectra are expected to be more realistic than the labo-
ratory spectra and more representative of the actual soil conditions in the study area.

The NASA Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture product provides global, 
3-hourly, 9-km resolution estimates of top soil (0–5 cm) soil moisture assimilating SMAP L-band (1.4 GHz) daily 
microwave brightness temperature into the NASA Catchment land surface model (Ducharne et al., 2000; Koster 
et al., 2000). Reflectance estimates were averaged from AVIRIS-C data to match the resolution of corresponding 
SMAP footprints (Figure 2c).

2.5.  CliMA-Land Model

The CliMA-Land model includes a hyperspectral canopy radiative transfer, soil water movement, plant water 
transport, stomatal regulation, and simulates water, carbon, and energy fluxes in a modular manner being part of 
a new ESM developed by the Climate Modeling Alliance (CliMA). The CliMA-Land radiative transfer scheme 
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is based on the vertically heterogeneous mSCOPE (Yang et  al.,  2017), which makes use of Fluspect (Vilfan 
et al., 2016) to simulate leaf reflectance, transmittance, and fluorescence at leaf level, and a SAIL based formu-
lation (Verhoef, 1984) to compute spectrally resolved radiative transfer, as well as emitted fluorescence (van 
der Tol et al., 2016). However, some important changes were incorporated into the new CliMA-Land radiative 
transfer scheme including: (a) accounting for carotenoid light absorption as part of absorbed photosynthetically 
active radiation (Wang & Frankenberg, 2022; Wang et al., 2021, 2023) and (b) accounting for horizontal canopy 
structure with the inclusion of a clumping index (Braghiere et al., 2021a).

We used the gridded Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product at 0.5° spatial 
resolution and 8-day temporal resolution (Yuan et al., 2011), weekly mean leaf chlorophyll content to represent 
seasonality of canopy greenness (Croft et al., 2020), and assumed leaf carotenoid content being 1/7 of the chlo-
rophyll content, specific leaf area as the inverse of leaf mass per area (Butler et al., 2017), leaf photosynthetic 
capacity represented by the maximum carboxylation rate at a reference temperature of 25°C (Vcmax25) from a 
machine learning based product (Luo et al., 2021), the maximum electron transport rate at a reference tempera-
ture of 25°C (Jmax25), and respiration rate at a reference temperature of 25°C (Rd25) scaled from Vcmax25 as 
Jmax25 = 1.67.Vcmax25 and Rd25 = 0.015.Vcmax25, a canopy height map was used to initialize plant hydraulic 
architecture within each simulation (Simard et al., 2011), and MODIS clumping index was used to represent 
canopy horizontal structure (Braghiere et al., 2019; He et al., 2012). Gridding Machine (Wang et al., 2022) is a 
tool developed for CliMA-Land that simplifies the replacement of plant trait maps. These maps contain impor-
tant information about vegetation characteristics and are crucial for accurately representing vegetation processes 
in the model. With Gridding Machine, researchers can easily incorporate new or improved plant trait maps into 

Figure 2.  (a) Soil color map at 0.23° resolution over the continental USA from the Community Land Model version 5 (CML5). Locations of soil samples and 
AVIRIS + Soil Moisture Active Passive (SMAP) data are indicated (see Methodology for a description of sites and data). (b) Scatter plot of photosynthetically active 
radiation band and near infra-red band soil albedos for the default soil moisture scheme in CLM5 (left) versus the updated soil moisture scheme version (right). 
Different colors indicate different sites, while shading indicates different levels of soil moisture. (c) Diagram showing the soil color map resolution from CLM5 in 
two-band with the AVIRIS + SMAP data coverage indicated (left). The observed shortwave hyperspectral soil albedo is shown (black dotted line) with the two-band 
albedo from CLM5 for soil color 15 (blue line), and the fitted curve using Four Bands Fitting Hybrid method (4H, brown line). See methodology for a complete 
description of the fitting methods. (d) RMSE of soil albedo for the CLM5 two-band method and all the other fitting methods (2P: Two Bands Fitting Point; 2C: Two 
Bands Fitting Curve; 2H: Two Bands Fitting Hybrid; and 4C: Four Bands Fitting Curve). All the other experiments carried out the 4H method due to smaller associated 
errors.
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CliMA-Land, allowing for the integration of the latest scientific advancements and data sources. This flexibility 
enhances the model's capabilities in capturing the complexities of vegetation processes and improves predictions 
of ecosystem dynamics.

2.6.  Climate Simulation

We ran simulations using National Center for Atmospheric Research (NCAR) Community Atmosphere Model 
(CAM) 6, coupled with CLM5 and prescribed surface ocean temperatures, a river transport model (MOSART) 
and the Los Alamos Sea Ice Model (CICE). Simulations were run at a 30-min time step with a resolution of 1.9° 
by 2.5° for 50 years. We specifically ran the model using compset F_2000_SP, which uses the models described 
above. We ran the model with no dynamic vegetation response; atmospheric CO2 was held constant at 367 ppm 
for one set of runs and 700 ppm for the other set. Present-day prescribed surface ocean temperatures were used 
in both CO2 scenarios.

We simulate global climate for scenarios where the background soil albedo behaves as if the diffuse incident 
PAR was completely blue (Figure 1c), and the incident direct PAR was completely red (Figure 1d), but only 
for sun zenith angles over 60°. The justification for the general representation of the extreme sun zenith angles 
(>60°) used in these climate simulations comes from radiative transfer model results under clear sky conditions 
that indicate most of the direct photosynthetically active irradiance is skewed to red, while most of the diffuse 
photosynthetically active irradiance is skewed to blue (Kravitz et al., 2012; Mayer & Kylling, 2005). Supple-
mentary runs were performed assuming the background soil albedo acted as: (a) global PAR radiation was blue, 
(b) global PAR radiation was red, and (c) global NIR radiation was far-red. These large changes to soil albedo 
were chosen to clearly demonstrate the extremes of change. Similarly, analysis considering all sun zenith angles 
is presented in Supporting Information (Table S3 in Supporting Information S1). The canopy albedo in CLM 
was calculated using the two-stream radiative transfer scheme, which is a function of LAI and SAI, leaf albedo 
and transmittance, soil albedo, and the cosine of the zenith angle of the incident beam radiation, among other 
parameters (Sellers, 1985). We averaged the final 30 years of the following variables (collected monthly) from 
the modified CLM5 with new soil background albedos: net shortwave radiation flux at TOA (W m −2); latent heat 
flux (W m −2); maximum daily 2 m air temperature (K); photosynthesis (μmol m −2 s −1); precipitation (mm day −1); 
and cloud cover (%) from CAM6.

3.  Results
In this study, we represent the effects of soil color and soil water volumetric content globally using a combination 
of the CLM5 soil color scheme (P. J. Lawrence & Chase, 2007; D. M. Lawrence et al., 2019) and the GSV soil 
albedo model (Jiang & Fang, 2019). First, we updated the impact of top layer (0–5 cm) soil moisture content in 
CLM5 by linearly averaging the soil albedos for saturated and dry soil color classes (Equation 1). Figure 2 shows 
a validation of the updated method for calculating the impact of soil moisture on PAR and NIR soil background 
albedos.

Figure 2a shows the CLM5 soil color map over the continental USA with five locations where soil samples 
were collected (Lobell & Asner, 2002) and one location in California where hyperspectral data was collected 
with AVIRIS-C (hereafter “AVIRIS”) (Green et al., 1998, 2020). Soil color was combined with measurements 
of soil moisture collected with NASA's SMAP mission (Reichle et al., 2019) and validated with AVIRIS data 
(Figure 2c). The updated soil moisture scheme increased the predictive skill of top soil layer impact on soil albedo 
(from R2 = 0.29 to R2 = 0.54). The data points show in Figure 2a are independent spectral soil measurements, 
either from ground data or a combination of AVIRIS and SMAP, and therefore, they were not used in the training 
processes of the GSV model. Likewise, in Figures 2b and 2d, the updated CLM5 soil moisture scheme is vali-
dated with independent data, as well as the fitting methods.

The two-band soil albedo in CLM5 with the updated soil moisture scheme was then used with the GSV vectors to 
upscale the broadband version into a hyperspectral curve using the different methodologies described in Note S1 
in Supporting Information S1. The different fitting methodologies minimize the sum of the square error between 
the average values for each part of the spectrum separately. A complete description of the method can be found 
in Methods, and a visual diagram can be found in Figure S3 in Supporting Information S1. Figure 2d shows the 
RMSE of soil background albedo for the CLM5 two-band method and all the other fitting methods. The method 
4H presented the lowest associated RMSE and it was used in all the experiments that followed.
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Figure  1 shows the global average broadband soil albedo following the “soil color” scheme at 1° resolution 
(P.  J. Lawrence & Chase, 2007) and the hyperspectral soil albedo calculated using the GSV model (Jiang & 
Fang,  2019). Averaged across the shortwave radiation spectrum (400–2,500  nm), the difference between the 
hyperspectral curve and the broadband curve are negative and less than 1% (∆αs = −0.007 ± 0.005), indicat-
ing that overall, the solar spectrum reflectance is slightly greater when assuming a broadband soil albedo. In 
some places on Earth, especially over deserts with sandy soils, these averaged spectral differences can reach 
|∆αs|  >  0.02 (Figure S1 in Supporting Information  S1). However, for particular wavelengths (e.g., blue and 
far-red), the differences in spectral albedo can be substantial (|∆αs| > 0.2). The largest differences between the 
hyperspectral and broadband soil background albedos are found in three distinct bands of the shortwave radiation 
spectrum, that is, far-red (702–747 nm with average ∆αs = −0.046 ± 0.033, blue (404–504 nm) with average 
∆αs = −0.038 ± 0.033, and red (624–697 nm) with average ∆αs = 0.035 ± 0.029 (Figures 1b–1d).

The net shortwave surface radiation budget and thus surface temperature are directly affected by changes in 
surface albedo. The shortwave radiative forcing has been used to estimate the global impact of regional changes 
in surface albedo (Kramer et al., 2021; Loew et al., 2014). In this study, the shortwave radiative forcing is inter-
preted as a disturbance of the reflected radiances caused by variations in soil and surface albedos. Therefore, the 
soil albedo-induced radiative forcing as presented here should not be interpreted as estimates of radiative forcing 
from different climate forcing agents (Bright & Lund, 2021), but rather as a proxy of the surface shortwave energy 
imbalance caused by assuming a broadband background soil albedo representation versus a hyperspectral one. 
The albedo-induced radiative forcing (𝐴𝐴 RF𝛼𝛼𝑠𝑠

 ) is given by

RF𝛼𝛼𝑠𝑠
= −𝑅𝑅

↓

TOA
Γ
↕

𝛼𝛼Δ𝛼𝛼𝑠𝑠 = ∫
2500nm

400nm

−𝑅𝑅
↓

TOA
(𝜆𝜆)Γ

↕

𝑎𝑎(𝜆𝜆)Δ𝛼𝛼𝑠𝑠(𝜆𝜆)𝑑𝑑𝑑𝑑� (2)

where 𝐴𝐴 R
↓

TOA
 (λ) (mW m −2 nm −1) is the TOA spectral incoming solar radiation flux following Kurucz (Kurucz, 1992) 

(Figure S2 in Supporting Information S1), 𝐴𝐴 Γ
↕

a (λ) is the two-way spectral atmospheric transmissivity that is given 
as the product of the downward and upward spectral atmospheric transmissivities, assumed to be equal to one 
another, and ∆αs(λ) is the difference in spectral soil albedo between the hyperspectral and the broadband cases.

We calculate radiative forcing for barren soils and for soils with vegetation using the CliMA-Land model 
(Figure 3a). The mean yearly climatological values for 2020 from ERA5 of: (a) direct and diffuse incident short-
wave irradiance, (b) volumetric soil moisture at the first soil layer, and (c) incident shortwave radiation at the 
TOA were used. Yearly means of all the canopy related variables (LAI, clumping index, chlorophyll content, soil 
colors) were also used in these calculations. For barren soils globally, the absolute soil albedo-induced radiative 
forcing is greater than the case when vegetation canopies and soils are considered together. Over areas with dense 
vegetation (i.e., tropical and boreal forests), the difference between a hyperspectral soil representation and a 

Figure 3.  (a) Global average spectral radiative forcing (mW m −2 nm −1) caused by the difference between a hyperspectral 
and broadband background soil albedo over soil only (continuous line) and for soil + canopy (dashed line) from CliMA-Land 
using yearly climatological values for 2020 (see Methodology). (b) The spectrally integrated radiative forcing between the 
continuous hyperspectral soil albedo and the discontinuous broadband albedo for soil + vegetation canopy from CliMA-Land. 
The global mean radiative forcing with standard deviation is also shown.
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broadband one is attenuated because solar radiation interacts less with the background soil in the presence of an 
optically active vegetation (Figure 3b).

The spectral discontinuity in 700 nm, also known as the “red edge,” is more applicable to vegetated surfaces, as 
it reflects the transition from PAR to NIR. This feature is often used to determine the two-band spectral curve of 
soil background albedo in ESMs, but for barren soils or areas with low vegetation cover, the spectral discontinuity 
becomes less relevant in determining surface reflectance. This can lead to inaccuracies in shortwave radiation 
simulations in ESMs that assume a spectral discontinuity in the soil background albedo at 700 nm. Additionally, 
the high variability in LAI throughout the year can lead to significant seasonal biases in shortwave radiation 
simulations based on this assumption.

Over desert areas, the integrated radiative forcing can be as high as 30 W m −2, mostly due to blue and far-red 
wavelengths. In the PAR spectral region, although the blue radiative forcing and the red one have opposite 
signs, the blue radiative forcing is at least 50% higher than the red one, causing a positive bias over the entire 
PAR region. In the NIR spectral region, most of the radiative forcing is positive and associated with the spectral 
region 700–1,000 nm. The global-mean integrated radiative forcing bias including soil and vegetation canopy is 
therefore positive and it is equal to 3.55 W m −2. We conducted an additional analysis to compute the global-mean 
radiative forcing bias including ocean points set to zero, to further our initial analysis that used only land-based 
reference values. The results show a smaller value (1.20 W m −2) but still positive (see Figure S6 in Supporting 
Information S1).

This difference in soil albedo-induced global radiative forcing propagates into other ESM components, present-
ing further impacts on climate simulations. For instance, at CO2 concentrations for the year 2000 (367 ppm), 
accounting for the different spectral characteristics of direct (red) versus diffuse (blue) light for sun zenith angles 
over 60° decreases average latent heat fluxes (Figure  4b and Table  1), cloud cover (Figure  4g), and rainfall 
(Figure 4d). At current and future CO2 concentrations, maximum daily temperature (Figure 4c) increases when 
considering the spectral effect of direct red versus diffuse blue light on soil reflectance. Photosynthesis decreases 
for current CO2 concentrations (Figure 4e) but increases in the future relative to biases in blue/red ratio. The same 
analysis is presented in Supporting Information S1 considering all sun zenith angles (Table S3 in Supporting 
Information S1).

The maps (Figure 4) show a significant decrease in net solar flux at TOA over Alaska and northern/western 
Canada, as well as parts of central Siberia. By contrast, over Europe and eastern Asia, we find an increase in 
net solar flux at TOA. Over most tropical forests, there is an increase in net solar flux at TOA, although parts 
of northern Amazon, eastern Africa, and southern/central Australia present a decrease in net solar flux at TOA. 
Spatial patterns of maximum daily temperature tend to follow changes in net solar flux at TOA, with cloud cover 
and rainfall patterns showing the opposite behavior.

A validation with observation-based products is shown in Figures S4 and S5 in Supporting Information  S1. 
The bias, RMSE, correlation coefficient, and overall score (the weighted average between bias and RMSE, 
given double weight to RMSE) for the control global run of CLM 5.0 coupled to CAM 6.0 (control), the modi-
fied version of the model considering diffuse light as blue and direct light as red for sun zenith angles larger 
than 60° (color) and observation products for precipitation in mm  d −1 from Willmott-Matsuura (Willmott & 
Matsuura, 2018), all-sky albedo from MODIS (2001–2003) (Schaaf et al., 2002), latent heat in W m −2 and photo-
synthesis in gC m −2 d −1 from FLUXNET (1982–2008) (Jung et al., 2011) are shown in Table S4 in Supporting 
Information S1. A validation for atmospheric variables is shown Table S5 in Supporting Information S1, includ-
ing the Clouds and Earth's Radiant Energy Systems (CERES) Energy Balanced and Filled (EBAF) shortwave 
Cloud Forcing product at 1° resolution globally from March 2000 to February 2017 (Kato et al., 2018) showing 
a slight improvement in the space-time correlation coefficient between the hyperspectral version of the model 
and observations.

4.  Discussion
ESMs can propagate errors into several parts of the climate system by making simplistic assumptions about the 
hyperspectral nature of the shortwave radiation. Understanding how global changes affect the composition of 
solar radiation reaching the Earth's surface is integral to accurate modeling of the global carbon cycle (Schneider, 
Lan, et al., 2017). For instance, global changes in cloudiness and pollution may be affecting the sunlight received 
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by plants (Braghiere et  al.,  2020b; Durand et  al.,  2021). Local seasonal and diurnal changes in the spectral 
composition of surface incident shortwave radiation are related to atmospheric water vapor, which are predicted 
to increase given higher average global temperatures (Kotilainen et  al.,  2020). Therefore, it is desired that 
state-of-art ESMs become able to represent the hyperspectral nature of the radiation in order to allow different 
hypothesis testing and more accurate uncertainty quantification. In our simulations, we observed a global inte-
grated radiative forcing divergence of 3.55 W m −2 between the two-band and the hyperspectral representations 
of soil background albedo.

Figure 4.  Climate simulations with blue diffuse versus red direct soil background albedos for present-day CO2 concentrations. Simulations of CLM-5.0 coupled with 
CAM-6.0 for 30 years, for which we assumed photosynthetically active radiation (PAR) band background soil albedo acted as the diffuse incident PAR was blue and 
the incident direct PAR was red for sun zenith angles greater than 60°. (a) Change in net shortwave radiation flux at the TOA (W m −2). (b) Change in latent heat flux 
(W m −2). (c) Change in maximum daily 2 m air temperature (K). (d) Change in precipitation (mm day −1). (e) Change in photosynthesis (μmol m −2 s −1). (f) Change in 
cloud cover percentage (%).
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When performing land-atmosphere coupled runs while considering the more red nature of direct light at 
sunsets/sunrises globally, we estimate a significant difference in net solar flux at TOA (>3.3 W m −2) and 
further impacts on latent and sensible heat fluxes, cloudiness, rainfall, surface temperature, and photo-
synthesis (Figure 4). These results highlight the importance of incorporating hyperspectral information 
in current ESMs. Doing so in the coming years will also enable direct assimilation of in-situ and satellite 
observations of hyperspectral surface reflectance (Schimel et al., 2019; Schneider, Teixeira, et al., 2017), 
linking intrinsic surface properties with processes, such as leaf pigments (Féret et al., 2019), vegetation 
and soils chemical composition (Meacham-Hensold et al., 2019; Serbin et al., 2014), as well as rhizos-
pheric processes (Braghiere et al., 2021b; Sousa et al., 2021).

Figure 4 includes variables that were evaluated over both land and ocean, such as net solar flux at TOA 
(W  m −2) and vertically integrated total cloud (%), which may be influenced over the ocean through 
changes in land-sea temperature contrasts or circulation patterns. However, for the remaining variables, 
we intentionally concentrated our analysis on the impacts of changes in soil albedo specifically over the 
land surface. We did this because these variables are more immediately affected by alterations in soil 
albedo treatment on land, and have significant implications for human societies. This focused approach 
enables us to more accurately evaluate the potential impacts of soil albedo changes on key land-based 
climate variables, such as precipitation, temperature, and latent heat flux. By doing so, we hope to provide 
valuable insights into the potential regional impacts of soil albedo changes.

Our results also indicate that the diffuse blue versus direct red sunset/sunrise phenomenon in climate 
models may change precipitation and temperature patterns by simply considering the soil background 
albedo bias between two distinct treatments of the problem. However, further studies are needed where 
hyperspectral vegetation albedo biases are also included in the analyses. To do so, more hyperspectral 
models of vegetation, such as the GSV model for soils, are required. Yet to date, there are no real globally 
comprehensive observations of hyperspectral soil spectra—only models constructed from sparse data sets. 
Nevertheless, the general argument of this study is that two-band surface radiative transfer schemes are 
insufficient to completely characterize shortwave radiation-surface interactions, and that the development 
of atmosphere and surface hyperspectral radiative transfer schemes within ESMs is highly desirable.

It is important to consider the broader context of climate change and to compare the magnitudes of the 
changes in our study to the changes that would be expected in a current versus elevated-CO2 climate. To 
address this concern, we have provided a comparison between the two scenarios as shown in Table 1. 
Through our analysis, we have determined that the changes in latent heat flux resulting from different soil 
albedo treatments are on the order of 0.16 W m −2, while those resulting from increased CO2 concentra-
tions are on the order of 2.12 W m −2. By comparing all the evaluated variables shown in Table 1, we are 
able to better contextualize the significance of these changes within the broader context of climate change.

The global-mean changes due to explicit color are only fractions of a percent. However, we believe 
that these changes are still important to consider, particularly in light of the potential regional impacts 
that we have highlighted in our study. For example, regional changes in latent heat can be higher than 
5 W m −2 (Figure 4b). This indicates the importance of the spatial heterogeneity of the impacts of soil 
albedo changes on climate and the potential implications for regional climate variability and predictions 
of extreme events.

We acknowledge the limitations of this analysis and the uncertainties associated with the magnitude and 
direction of the changes in the evaluated climate variables caused by these two different treatments of soil 
albedo. For example, the analysis of the changes in soil albedo could be subject to uncertainties associ-
ated with the measurement or estimation of the optical properties of soils. Different methods or models 
may produce different estimates of the spectral reflectance of soils, and these differences may affect the 
calculation of the changes in soil albedo and the subsequent effects on climate variables. Also, there may 
be potential feedbacks between climate variables and vegetation dynamics that were not fully accounted 
for in the analysis. The analysis may need to consider the interactions between soil albedo, vegetation 
dynamics, and other biophysical and biogeochemical processes that affect climate variables (Chakraborty 
et al., 2022; Luo et al., 2018).

To account for the influence of other factors that may affect soil spectral reflectance, we acknowledge 
that our study has focused on only two variables, soil color and moisture, and that there are other factors 
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that could be confounding. For example, soil roughness has been shown to significantly impact soil reflectance, 
as well as other compositional characteristics such as soil organic matter content and iron-oxides (Cierniewski 
et  al.,  2004; Coulson & Reynolds,  1971; Hapke,  2012; Jacquemoud et  al.,  1992). While the spectral vectors 
used to simulate hyperspectral soil reflectance were derived from dry and humid observed soil reflectance data, 
it should be noted that laboratory soil spectra are typically measured on soils treated in standardized meth-
ods, which removes intrinsic soil aggregates that create shadow and does not represent the spatiotemporal vari-
ability in soil surface dynamics, such as soil surface crusts/seals that occur preferentially at the soil surface 
(Rodriguez-Caballero et al., 2022).

Likewise, vegetation canopy structure can significantly impact the magnitude of surface albedo, especially in 
sparsely vegetated surfaces (Braghiere et al., 2019, 2020a, 2021a). We have taken this into consideration when 
comparing land model runs with a clumping index, accounting for vegetation canopy horizontal heterogeneity in 
both setups (broadband and hyperspectral). Nevertheless, we acknowledge that improvements can be made to the 
soil color map if a clumping index is also taken into account when running the two-stream scheme with climato-
logical values of soil moisture and LAI. We recognize that the omission of these factors in our methodology may 
increase uncertainty of our results and should be considered in future studies.

The launching of global missions to comprehensively collect hyperspectral data and further inform the mineral 
composition of Earth's soils, such as the NASA Earth Surface Mineral Dust Source Investigation (EMIT), will 
support future modeling endeavors to help close this gap. Likewise, NASA's Surface Biology and Geology mission 
will enable acquisition of high spatial resolution (∼30 m pixels) hyperspectral data globally with sub-monthly 
temporal revisits over terrestrial, freshwater, and coastal marine habitats (Cawse-Nicholson et al., 2021), allowing 
ESMs to finally shift radiative transfer paradigms from broadband to hyperspectral unlocking a new era in climate 
modeling.
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