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Summary
PySDM and the accompanying PySDM-examples packages are open-source modeling tools for
computational studies of atmospheric clouds, aerosols, and precipitation. The project hinges on
the particle-based microphysics modeling approach and Pythonic code design. The eponymous
SDM refers to the Super Droplet Method – a Monte-Carlo algorithm introduced in Shima et al.
(2009) to represent the coagulation of particles in modeling frameworks such as Large-Eddy
Simulations (LES) of atmospheric flows. Recent efforts have culminated in the “v2” release
line, which includes representation of a variety of new processes for both liquid and ice-phase
particles, performance enhancements such as adaptive time-stepping, as well as a broadened
suite of examples which demonstrate, test, and motivate the use of the SDM for cloud modeling
research.

Background and Statement of Need
The key motivation behind development of PySDM has been to offer the community an
approachable, readily reusable software for users and developers who wish to contribute to the
scientific progress of particle-based methods for simulating atmospheric clouds. To this end,
we strive to maintain modularity of the PySDM building blocks, separation of functionality and
examples, and extensive unit test coverage in the project. A user of the package can select
top-level options such as the simulation environment, particle processes, and output attributes
without a detailed grasp of the CPU and GPU backend code.

PySDM “v1” featured representation of the following processes: condensational growth/evap-
oration, collisional growth, aqueous sulfur chemistry, and coupling of particle transport and
vapor/heat budget with grid-discretized fluid flow. This paper outlines subsequent develop-
ments in the “v2” releases of PySDM including representation of three new processes (collisional
breakup, immersion freezing, and surface-partitioning of organic aerosol components), initializa-
tion framework for aerosol size and composition, enhanced support for adaptive time-stepping,
and additional illustrative examples.

In the companion PySDM-examples package, we continue to expand and maintain a set of
examples demonstrating project features through automated reproduction of results from
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literature. The examples package serves multiple roles in the project. First, it guides users and
developers through the package features. Second, PySDM-examples has been used as educa-
tional material, offering interactive Jupyter notebooks suitable for hands-on demonstrations of
basic cloud-physics simulations. Third, inclusion of simulation scripts/notebooks pertaining to
new research papers can streamline assessment of the results by reviewers. Running simulations
described in a paper can be done independently on a cloud-computing platform such as Google
Colab or mybinder.org. Finally, we require new examples introduced into PySDM-examples to
be accompanied by a set of “smoke tests” in PySDM, which assert results against reference data
to ensure that published results remain reproducible with future developments of PySDM.

Summary of new features and examples in v2
For an example of running basic zero-dimensional simulations with PySDM, we refer to the
project README.md file and Bartman, Bulenok, et al. (2022). The key building blocks of the
PySDM API and class hierarchy are: “attributes”, “backends”, “dynamics”, “environments”,
“products” and physics “formulae”. The following code snippets demonstrate new elements of
PySDM API, which can be added or substituted into the “v1” API description to run simulations
using the new features. Execution of code snippets from both the present “v2” and the previous
“v1” papers is included in the PySDM continuous integration workflow.

Collisional Breakup
The collisional breakup process represents the splitting of two colliding superdroplets into
multiple fragments. It can be specified as an individual Breakup “dynamic” or used within
a unified Collision “dynamic”, in which the probability of breakup versus coalescence is
sampled. The additional PySDM components used in the example below can be imported via:

from PySDM.dynamics.collisions import Collision

from PySDM.dynamics.collisions.collision_kernels import Golovin

from PySDM.dynamics.collisions.coalescence_efficiencies import ConstEc

from PySDM.dynamics.collisions.breakup_efficiencies import ConstEb

from PySDM.dynamics.collisions.breakup_fragmentations import ExponFrag

The rate of superdroplet collisions are specified by a collision kernel, and the breakup process
requires three additional specifications: coalescence_efficiencies (probability of coalescence
occurring), breakup_efficiencies (probability of breakup occurring if not coalescence), and
breakup_fragmentations (the number of fragments formed in the case of a breakup event).

from PySDM import Builder

from PySDM.backends import CPU

from PySDM.environments import Box

from PySDM.physics import si

from PySDM.formulae import Formulae

formulae = Formulae(fragmentation_function="ExponFrag")

builder = Builder(backend=CPU(formulae), n_sd=100)

builder.set_environment(Box(dv=1 * si.m**3, dt=1 * si.s))

frag_scale = formulae.trivia.volume(radius=100 * si.micrometres)

builder.add_dynamic(Collision(

collision_kernel=Golovin(b=1.5e3 / si.s),

coalescence_efficiency=ConstEc(Ec=0.9),

breakup_efficiency=ConstEb(Eb=1.0),

fragmentation_function=ExponFrag(scale=frag_scale),

adaptive=True,

))
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In PySDM-examples, we introduced a set of notebooks reproducing figures from two publications.
In Bieli et al. (2022), PySDM results from collisional coalescence and breakup were used as
a calibration tool for learning microphysical rate parameters. In Jong et al. (in review), the
physics of and algorithm for superdroplet breakup are described, and the impact of breakup on
cloud properties is demonstrated with box and single-column simulations (the latter based on
Shipway & Hill (2012)).

Immersion Freezing
This release of PySDM introduces representation of immersion freezing, i.e. liquid-solid phase
change contingent on the presence of insoluble ice nuclei immersed in supercooled water
droplets. There are two alternative models implemented: the singular approach presented
in Shima et al. (2020), and the time-dependent approach of Alpert & Knopf (2016). For
the time-dependent model, the water Activity Based Immersion Freezing Model (ABIFM) of
Knopf & Alpert (2013) is used. The Freezing “dynamic” is introduced by specifying whether
a singular model is used, and additional particle attributes (either freezing temperature or
immersed surface area) must be initialized accordingly.

from PySDM.dynamics import Freezing

builder.add_dynamic(Freezing(singular=False))

For validation of the the newly introduced immersion freezing models, a set of notebooks
reproducing box-model simulations from Alpert & Knopf (2016) was introduced to the
PySDM-examples package. A comparison of the time-dependent and singular models using a
two-dimensional kinematic prescribed-flow framework was the focus of Arabas et al. (2023).

Initialization of multi-component internally or externally mixed aerosol
The new aerosol initialization framework introduced in PySDM “v2” allows flexible specifica-
tion of multi-modal, multi-component aerosol. The DryAerosolMixture class takes a tuple
of compounds and dictionaries specifying their molar masses, densities, solubilities, and
ionic dissociation numbers. The user specifies the aerosol modes which are comprised of a
kappa hygroscopicity value, calculated from the molecular components and their associated
mass_fractions, and a dry aerosol size spectrum. For example, a single-mode aerosol class
(SimpleAerosol) can be defined as follows.

from PySDM.initialisation import spectra

from PySDM.initialisation.aerosol_composition import DryAerosolMixture

class SimpleAerosol(DryAerosolMixture):

def __init__(self):

super().__init__(

compounds=("(NH4)2SO4", "NaCl"),

molar_masses={"(NH4)2SO4": 132.14 * si.g / si.mole,

"NaCl": 58.44 * si.g / si.mole},

densities={"(NH4)2SO4": 1.77 * si.g / si.cm**3,

"NaCl": 2.16 * si.g / si.cm**3},

is_soluble={"(NH4)2SO4": True, "NaCl": True},

ionic_dissociation_phi={"(NH4)2SO4": 3, "NaCl": 2},

)

self.modes = ({

"kappa": self.kappa(

mass_fractions={"(NH4)2SO4": 0.7, "NaCl": 0.3}),

"spectrum": spectra.Lognormal(

norm_factor=100 / si.cm**3,

m_mode=50 * si.nm, s_geom=2

),

},)
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An aerosol object (instance of DryAerosolMixture subclass) is used during initialization to
calculate the total number of superdroplets given a prescribed number per mode, sample
the size spectrum from the aerosol spectrum property, and initialize the kappa times dry

volume attribute using the hygroscopicity property kappa. The choice of kappa times dry

volume as an extensive attribute ensures that, upon coalescence, the hygroscopicity of a
resultant super-particle is the volume-weighted average of the hygroscopicity of the coalescing
super-particles. The new aerosol initialization framework is used in several examples in PySDM-

examples including a new example that reproduces results from Abdul-Razzak & Ghan (2000),
comparing PySDM simulations against data retrieved from the publication as shown in Figure 1).
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Figure 1: Activated aerosol fraction in Mode 1 as a function of aerosol number concentration in Mode
2, reproducing results from Abdul-Razzak & Ghan (2000). The figure shows the results from PySDM in
color with two definitions of activated fraction based on the critical supersaturation threshold (Scrit)
or the critical volume threshold (Vcrit). For comparison, we include the parameterization developed in
Abdul-Razzak & Ghan (2000) as formulated in their paper (solid line) and as implemented in a new
Julia model (CloudMicrophysics.jl, dashed line), as well as the results from simulations reported in
Abdul-Razzak & Ghan (2000) (black dots).

Surface-partitioning of organics to modify surface tension of droplets
PySDM “v2” includes a new example demonstrating the available models for droplet surface
tension. The four surface tension options included in PySDM, which define the droplet sur-
face tension as a function of dry aerosol composition and wet radius, are: 'Constant',
'CompressedFilmOvadnevaite' (Ovadnevaite et al. (2017)), 'CompressedFilmRuehl' (Ruehl
et al. (2016)), and 'SzyszkowskiLangmuir' following the Szyszkowski-Langmuir equation.
Parameters for the three surface-partitioning models must be specified as shown below. A full
comparison of the four surface tension models can be found in the Singer_Ward example.

from PySDM import Formulae

f = Formulae(

surface_tension='CompressedFilmOvadnevaite',

constants={

'sgm_org': 35 * si.mN / si.m,

'delta_min': 1.75 * si.nm

}

)
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Adaptive time-stepping
In PySDM “v2”, the Condensation, Collision, and Displacement “dynamics” all support
adaptive time-stepping logic, which involves sub-stepping within the user-specified time step
used for coupling with the “environment”. Adaptivity is enabled by default and can be disabled
by passing False as the value of optional adaptive keyword to the given dynamic. This
adaptive time-stepping applies separately in each grid box of a multidimensional environment,
and includes a load-balancing logic as described in Bartman & Arabas (2023). In the case
of collisions, the time-step adaptivity is aimed at eliminating errors associated with multiple
coalescence events within a timestep. In the case of condensation, the time-step adaptivity is
aimed at reducing computational load by coupling the time-step length choice with ambient
supersaturation leading to using longer time-steps in cloud-free regions and shorter time-steps
in regions where droplet [de]activation or rain evaporation occurs. In the case of displacement,
the time-step adaptivity is aimed at obeying a given tolerance in integration of the super-particle
trajectories, and the error measure is constructed by comparing implicit- and explicit-Euler
solutions.

Relevant recent open-source developments
PySDM supports a PyMPDATA-based (Bartman, Banaśkiewicz, et al., 2022) reimplementation
of the 1D kinematically-driven test framework in a recently-published intercomparison of
microphysics methods (Hill et al., 2023). The authors are unaware of recent SDM algorithm
implementations in open-source packages beyond those mentioned in (Bartman, Bulenok,
et al., 2022) and the related list of links in the PySDM README file. Furthermore, none
of these implementations include superdroplet-count-conserving collisional breakup, organic
surface partitioning or adaptive time-stepping for coagulation. The aerosol initialization method
described in PySDM v2 is similar to that of pyrcel (Rothenberg & Wang, 2017). Leveraging the
availability of PyPartMC - a new Python interface to the PartMC particle-resolved Monte-Carlo
aerosol simulation code (D’Aquino et al., 2023), PySDM test suite has been extended with
automated checks against PartMC.
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