
1. Introduction
Designing dynamical cores that meet the challenges imposed by simulating the continuous equations that govern 
geophysical flows has a long history (Williamson, 2007). Various numerical methods are employed to achieve 
accuracy, efficiency, and stability. However, careful compromises are required because these goals are often 
in conflict: significant dissipation helps with stability at the cost of accuracy, and high-order schemes deliver 
accuracy at the expense of computing cost. This work explores the discontinuous Galerkin (DG) method for 
simulating atmospheric motions. See Giraldo et al. (2002), Nair et al. (2005), Giraldo and Restelli (2008), Restelli 
and Giraldo (2009), Nair et al. (2009), Brdar et al. (2011), Kelly and Giraldo (2012), Kopera and Giraldo (2014), 
Yelash et  al.  (2014), Bao et  al.  (2015), Blaise et  al.  (2016), Tumolo and Bonaventura  (2015), D. Abdi and 
Giraldo (2016), Baldauf (2021) for a non-exhaustive list of past uses of the DG method applied to atmospheric 
modeling.

The goal is not to provide an in-depth introduction to the method. For this, there are excellent references 
(Hesthaven & Warburton,  2007; D. Kopriva,  2009; Giraldo,  2020; Winters et  al.,  2021), which illustrate the 
method in the context of weak formulations of partial differential equations, finite-element and spectral methods, 
and discrete algebraic properties of numerical operators. Instead, we focus on compromises that achieve stable 
and accurate atmospheric solutions.

The DG method is similar to finite volume methods since both use a discontinuous function space to approximate 
a partial differential equation. Functions are approximated as piecewise polynomials whose shape is chosen to 
achieve high-order accuracy. Interestingly, the convergence of the mean value in each control volume has been 

Abstract Dynamical cores used to study the circulation of the atmosphere employ various numerical 
methods ranging from finite-volume, spectral element, global spectral, and hybrid methods. In this work, 
we explore the use of Flux-Differencing Discontinuous Galerkin (FDDG) methods to simulate a fully 
compressible dry atmosphere at various resolutions. We show that the method offers a judicious compromise 
between high-order accuracy and stability for large-eddy simulations and simulations of the atmospheric 
general circulation. In particular, filters, divergence damping, diffusion, hyperdiffusion, or sponge-layers 
are not required to ensure stability; only the numerical dissipation naturally afforded by FDDG is necessary. 
We apply the method to the simulation of dry convection in an atmospheric boundary layer and in a 
global atmospheric dynamical core in the standard benchmark of Held and Suarez (1994, https://doi.
org/10.1175/1520-0477(1994)075〈1825:apftio〉2.0.co;2).

Plain Language Summary Numerical models cannot explicitly represent all degrees of freedom 
that characterize atmospheric flows due to limitations in computing power. One must allocate the available 
computational degrees of freedom to reduce the degradation of the solution. In this work, we explore the use 
of the discontinuous Galerkin numerical method, a hybrid approach that combines the accuracy of spectral 
methods with the flexibility of finite volume methods. We apply it to idealized dry atmospheric simulations and 
show that the method is robust and incorporates physical principles to best account for unresolved processes.

SOUZA ET AL.

© 2023 The Authors. Journal of 
Advances in Modeling Earth Systems 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

The Flux-Differencing Discontinuous Galerkin Method 
Applied to an Idealized Fully Compressible Nonhydrostatic 
Dry Atmosphere
A. N. Souza1  , J. He2, T. Bischoff2  , M. Waruszewski3, L. Novak2, V. Barra2, T. Gibson4, A. Sridhar2, 
S. Kandala2, S. Byrne2, L. C. Wilcox5, J. Kozdon5, F. X. Giraldo5, O. Knoth6  , J. Marshall1, R. Ferrari1, 
and T. Schneider2 

1Massachusetts Institute of Technology, Cambridge, MA, USA, 2California Institute of Technology, Pasadena, CA, USA, 
3Sandia National Laboratories, Albuquerque, NM, USA, 4University of Illinois Urbana-Champaign, Urbana and Champaign, 
IL, USA, 5Naval Postgraduate School, Monterey, CA, USA, 6Leibniz Institute for Tropospheric Research, Leipzig, Germany

Key Points:
•  The Flux-Differencing Discontinuous 

Galerkin (FDDG) method is a 
robust numerical discretization for 
geophysically relevant configurations

•  FDDG allows for a computationally 
stable total energy formulation of the 
compressible Euler equations with 
gravity and rotation

•  FDDG simulates a dry convective 
boundary layer and the atmospheric 
general circulation using only 
numerical dissipation

Correspondence to:
A. N. Souza,
andrenogueirasouza@gmail.com

Citation:
Souza, A. N., He, J., Bischoff, T., 
Waruszewski, M., Novak, L., Barra, 
V., et al. (2023). The flux-differencing 
discontinuous Galerkin method applied 
to an idealized fully compressible 
nonhydrostatic dry atmosphere. Journal 
of Advances in Modeling Earth Systems, 
15, e2022MS003527. https://doi.
org/10.1029/2022MS003527

Received 18 NOV 2022
Accepted 10 APR 2023

10.1029/2022MS003527
RESEARCH ARTICLE

1 of 24

https://doi.org/10.1175/1520-0477(1994)075%E2%8C%A91825:apftio%E2%8C%AA2.0.co;2
https://doi.org/10.1175/1520-0477(1994)075%E2%8C%A91825:apftio%E2%8C%AA2.0.co;2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8025-3558
https://orcid.org/0000-0003-3930-2762
https://orcid.org/0000-0002-1003-3207
https://orcid.org/0000-0001-5687-2287
https://doi.org/10.1029/2022MS003527
https://doi.org/10.1029/2022MS003527
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022MS003527&domain=pdf&date_stamp=2023-04-23


Journal of Advances in Modeling Earth Systems

SOUZA ET AL.

10.1029/2022MS003527

2 of 24

shown by Cao et al. (2015) to exhibit superconvergence properties in special cases. For example, if the numerical 
scheme uses sixth-order polynomials, then the control volume-mean converges at a 13th-order rate.

The method is a generalization of finite volume methods with some flavor of spectral methods as it uses a function 
basis within each control volume (see e.g., Canuto et al., 2006; Giraldo, 2020; Hesthaven & Warburton, 2007; 
Karniadakis & Sherwin, 2005; D. Kopriva, 2009). Figure 1 shows how increasing the polynomial order improves 
the DG approximation of a sinusoidal function. Notice the discontinuities at the control volume edges, which are 
a signature of the DG representation.

Finite volume flux-reconstruction methods can be applied to DG within the control volume and at the disconti-
nuities between elements (Fisher & Carpenter, 2013). The flexibility of choosing a “volume” numerical flux and 
the usual “interface” numerical flux is leveraged to yield robust numerical simulations. Departing from standard 
practice to use central fluxes for the volume terms, we demonstrate choices among a new class of schemes, 
known as Flux-Differencing Discontinuous Galerkin (FDDG) methods (Winters et al., 2021), which provide the 
numerical stability and accuracy necessary for geophysical fluid dynamics applications, in which the flows in 
question are usually strongly underresolved. The resulting spatial discretization is different from other DG meth-
ods that have been applied to geophysical flows such as those of, for example, Giraldo and Restelli (2008), Nair 
et al. (2009), Blaise et al. (2016), Baldauf (2021). What follows is along a new thread of methods, for example, 
G. J. Gassner et al. (2016b). We call the method flux-differencing here, but the method is sometimes called a 
“two-point flux” in the DG literature.

We rely on recent theoretical advancements in the formulation of FDDG methods. FDDG methods retain stability 
without needing additional diffusion, hyperdiffusion, or other numerical filters to guarantee stability. Instead, the 
numerical dissipation comes directly from the formulation of the numerical flux and the time-stepping method.

Of course, it is not always desirable to leave all dissipation to the numerical method itself; however, such implicit 
dissipation can be a desirable feature if the numerical dissipation mimics that owing to missing physical infor-
mation and otherwise is minimal where information loss is minimal (Pressel et al., 2017). As a counterpoint, 

Figure 1. Projection of a function onto spaces of polynomials. The different colors represent different control volumes. The original function y = sin(x) is in the top left 
panel, and various projections are shown in the other panels. Note the discontinuities at the edges of the control volumes in all projections.
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see, for example, Boyd (2001) for numerous reasons why it can be better to create a well-posed mathematical 
problem and use an optimally convergent numerical method. A robust numerical method saves human time since 
it is common in geophysical simulations to include the minimal necessary dissipation for stability; see Winters 
et al. (2021) for comments with respect to engineering and astrophysical examples. Tuning numerical filters to 
achieve a desired level of fidelity requires substantial effort, one that must often be repeated upon any change 
to model configuration. The automation of this effort through a well-chosen numerical method allows model 
developers to focus on the physics.

The rest of the paper is organized as follows. In Section 2 we give a brief overview of what makes FDDG different 
from traditional methods. We describe the mimetic discrete properties of the FDDG formulation and our choice 
of numerical fluxes. This section requires knowledge of spectral collocation methods and is safely skipped for 
those more interested in the results.

In Section 3 we give three examples of applying the FDDG method to the compressible Euler equations with 
gravity in both rotating and non-rotating reference frames, which we take as a model for dry atmospheres. First, 
we examine a large-eddy simulations (LES) of a dry convective boundary layer in a box with rigid walls at the 
top and bottom and doubly periodic horizontal boundary conditions. Second, we explore the use of FDDG for an 
idealized dry global Earth configuration (Held & Suarez, 1994). Third, we perform a simulation of an atmosphere 
in a “small-planet” configuration where the scale separation between convective scales and large scales is reduced 
(Kuang et al., 2005; Wedi & Smolarkiewicz, 2009). The same equation set and computational kernels are used 
for all three cases.

2. A Brief Overview of Flux-Differencing
A detailed explanation of the flux-differencing method used in this work is in Chan (2018) and Waruszewski 
et al. (2022), but here we focus on a heuristic overview. Furthermore we concentrate on the aspect that makes 
flux-differencing different from traditional DG methods, the volume term calculations. The core idea behind 
flux-differencing comes from recognizing that many properties of continuous calculus, such as the product or 
chain rule, fail to hold upon discretization. Thus algebraically equivalent formulations of an equation set yield 
different numerical discretizations with different discrete properties, for example, Zang (1991).

We briefly digress to examine why one would expect different numerical properties. The core discrepancy 
between the continuum calculus and the discrete calculus is the continuum identity

𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑑𝑑𝑥𝑥) − 𝑑𝑑

𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥 = 𝑥𝑥 (1)

for all smooth functions u(x). We choose this example because it is the simplest manifestation of aliasing errors. 
A grid that represents a polynomial of degree n cannot represent a polynomial of degree n + 1, as would be the 
case upon multiplication by x.

We illustrate the difference between continuous and discrete calculus using discrete operators. We use three grid 
points xi at points x1 = −1, x2 = 0, x3 = 1 and let D represent the differentiation matrix corresponding to those 
points. The differentiation matrix is defined by requiring a discrete power rule, that is, 𝐴𝐴 𝐴𝐴𝐴𝐴

𝐴𝐴−1
𝑖𝑖

=
∑

𝑖𝑖′
𝐷𝐷𝑖𝑖𝑖𝑖′ (𝐴𝐴𝑖𝑖′ )

𝐴𝐴 for 
k = 1, 2 and ∑i′Dii′ = 0. The latter requirement states that the row sum of the matrix is zero, or equivalently, that 
the derivative of a constant is zero. The derivative operator D and position operator X = Diagonal(x) are

𝐷𝐷 =

⎡

⎢

⎢

⎢

⎢

⎣

−3∕2 2 −1∕2

−1∕2 0 1∕2

1∕2 −2 3∕2

⎤

⎥

⎥

⎥

⎥

⎦

, and𝑋𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 0

0 0 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (2)

The discrete analog of Equation 1 is

𝐷𝐷𝐷𝐷𝒖𝒖 −𝐷𝐷𝐷𝐷𝒖𝒖 = 𝒖𝒖 (3)

where u is an arbitrary vector with components u = [u1, u2, u3]. Equation 3 implies 𝐴𝐴 𝐴𝐴𝐴𝐴 −𝐴𝐴𝐴𝐴 = 𝕀𝕀 where 𝐴𝐴 𝕀𝕀  is the 
identity operator, yet
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𝐷𝐷𝐷𝐷 −𝐷𝐷𝐷𝐷 =

⎡

⎢

⎢

⎢

⎢

⎣

0 2 −1

1∕2 0 1∕2

−1 2 0

⎤

⎥

⎥

⎥

⎥

⎦

 (4)

which is not the identity matrix. This discrepancy is at the heart of why diverse numerical formulations of equa-
tions have different properties.

To make connections with partial differential equation discretizations we use Burgers' equation as a further 
example,

𝜕𝜕𝑡𝑡𝑢𝑢 = − 𝜕𝜕𝑥𝑥

(

𝑢𝑢
2
)

⏟⏟⏟

conservative

= − 2𝑢𝑢𝜕𝜕𝑥𝑥𝑢𝑢
⏟⏟⏟

advective

= −
2

3

(

𝜕𝜕𝑥𝑥

(

𝑢𝑢
2
)

+ 𝑢𝑢𝜕𝜕𝑥𝑥𝑢𝑢
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

entropy stable

 (5)

where we recast the right hand side in multiple ways to emphasize potential discretizations. The conservative 
and advective forms are familiar, and the entropy conservative formulation, in this case a weighted average 
of the previous two, satisfies a discrete entropy inequality. Satisfying the discrete entropy inequality yields 
robust numerical solutions and is the most stable of the three potential discretizations. See G. J. Gassner and 
Winters (2021). We present the differences between the formulations in Equation 5 pictorially in Figure 2. We 
see that the different formulations, although qualitatively similar, yield quantitatively different tendencies. Upon 
grid refinement the discrepancies between the discretizations are eliminated, but we seldom have the luxury of 
resolving all the necessary scales and thus choose to emphasize the differences at a coarse resolution.

All of the tendencies are, in this case, split-forms, an algebraic rewriting of the equations. All split-forms and 
entropy stable methods involve flux-differencing, but entropy stable methods need not be a split-form. Entropy 

Figure 2. The different tendencies of Burgers' equation given the function on the top left. The different colors represent different elements and each element uses a 
polynomial of order 4. The top right is the conservative tendency, the bottom left is the advective tendency, and the bottom right is a weighted sum of the previous two.
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stability requires satisfying a discrete entropy equality for a given system, which for Burgers' equation is a 
weighted average but in general can require different kinds of averaging, for example, Winters et al. (2021).

We now rewrite the tendencies of Equation 5 to establish connections with flux-differencing methods. We focus 
on the “volume” (i.e., within each cell) contribution to the derivatives, since the “interface” contributions (i.e., 
across neighboring cell interfaces) are handled by standard methods. Letting Dii′ be a collocation differentiation 
matrix with components i, i′, and ui denote the ith component of the solution vector, the components of the 
tendency 𝐴𝐴   for Equation 5 are written as

[

conservative

]

𝑖𝑖
= −

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′ (𝑢𝑢𝑖𝑖′ )
2

 (6)

[

advective

]

𝑖𝑖
= −2𝑢𝑢𝑖𝑖

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′𝑢𝑢𝑖𝑖′ (7)

[

entropy stable

]

𝑖𝑖
= −

∑

𝑖𝑖′

2

3

(

𝐷𝐷𝑖𝑖𝑖𝑖′ (𝑢𝑢𝑖𝑖′ )
2
+ 𝑢𝑢𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖′𝑢𝑢𝑖𝑖′

)

. (8)

We use the primed indices, such as i′, as dummy indices for summation. We rewrite Equations 6–8 in a numerical 
flux formulation through the Rosetta stone provided by G. J. Gassner et al. (2016a). Let 𝐴𝐴 {⋅} be shorthand notation for

{𝜓𝜓} =
1

2
(𝜓𝜓𝑖𝑖′ + 𝜓𝜓𝑖𝑖) (9)

Since the derivative of a constant is zero, that is, the row sum of a differentiation matrix is zero,
∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′ = 0. (10)

We write the conservative form of the equations as
[

conservative

]

𝑖𝑖
= −

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′ (𝑢𝑢𝑖𝑖′ )
2
+ 0 = −

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′ (𝑢𝑢𝑖𝑖′ )
2
− (𝑢𝑢𝑖𝑖)

2
∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′ (11)

= −
∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′

(

(𝑢𝑢𝑖𝑖′ )
2
+ (𝑢𝑢𝑖𝑖)

2
)

= −2
∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′

{

𝑢𝑢
2
}

 (12)

Furthermore, we observe

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′ ({𝑢𝑢}{𝑢𝑢}) =
∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′

(

1

4
(𝑢𝑢𝑖𝑖′ + 𝑢𝑢𝑖𝑖)(𝑢𝑢𝑖𝑖′ + 𝑢𝑢𝑖𝑖)

)

 (13)

=
∑

𝑖𝑖′

(

𝐷𝐷𝑖𝑖𝑖𝑖′
1

4
(𝑢𝑢𝑖𝑖′ )

2
+

1

2
𝑢𝑢𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖′𝑢𝑢𝑖𝑖′

)

 (14)

=
∑

𝑖𝑖′

(

𝐷𝐷𝑖𝑖𝑖𝑖′
1

2

{

𝑢𝑢
2
}

+
1

2
𝑢𝑢𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖′𝑢𝑢𝑖𝑖′

)

 (15)

to write the advective form as
[

advective

]

𝑖𝑖
= −2

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′

(

2{𝑢𝑢}{𝑢𝑢} −
{

𝑢𝑢
2
})

 (16)

and the entropy stable form as

[

entropy stable

]

𝑖𝑖
= −2

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′

(

2

3
{𝑢𝑢}{𝑢𝑢} +

1

3

{

𝑢𝑢
2
}

)

 (17)

The terms acted upon by the differentiation matrix are now viewed as flux-estimates, that is,

conservative(𝑢𝑢𝑖𝑖′ , 𝑢𝑢𝑖𝑖) =
{

𝑢𝑢
2
}

=
𝑢𝑢
2

𝑖𝑖′
+ 𝑢𝑢

2
𝑖𝑖

2
 (18)
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advective(𝑢𝑢𝑖𝑖′ , 𝑢𝑢𝑖𝑖) = 2{𝑢𝑢}{𝑢𝑢} −
{

𝑢𝑢
2
}

= 2
𝑢𝑢𝑖𝑖′ + 𝑢𝑢𝑖𝑖

2

𝑢𝑢𝑖𝑖′ + 𝑢𝑢𝑖𝑖

2
−

𝑢𝑢
2

𝑖𝑖′
+ 𝑢𝑢

2
𝑖𝑖

2
 (19)

entropy stable(𝑢𝑢𝑖𝑖′ , 𝑢𝑢𝑖𝑖) =
2

3
{𝑢𝑢}{𝑢𝑢} +

1

3

{

𝑢𝑢
2
}

=
2

3

𝑢𝑢𝑖𝑖′ + 𝑢𝑢𝑖𝑖

2

𝑢𝑢𝑖𝑖′ + 𝑢𝑢𝑖𝑖

2
+

1

3

𝑢𝑢
2

𝑖𝑖′
+ 𝑢𝑢

2
𝑖𝑖

2
 (20)

All of these numerical fluxes satisfy the symmetry condition

 (𝑢𝑢𝑖𝑖′ , 𝑢𝑢𝑖𝑖) =  (𝑢𝑢𝑖𝑖, 𝑢𝑢𝑖𝑖′ ) (21)

and the consistency condition

 (𝑢𝑢𝑢 𝑢𝑢) = 𝑢𝑢
2
. (22)

In general, the consistency condition yields the underlying flux of a conservation law.

Interpreting the different split-forms of Equation 5 as different choices in numerical fluxes as in Equation 18 
through Equation 20 is more than algebraic sorcery. All of the discretizations are conservative. In general, differ-
ent flux-differencing methods are conservative if there is an underlying conservation law and the discretized oper-
ators satisfy appropriate properties. See G. J. Gassner (2013), G. J. Gassner et al. (2016a), Winters et al. (2021), 
G. J. Gassner and Winters (2021) for insights on why equations remain conservative for operators that satisfy 
a summation by parts property and Chan (2018), Waruszewski et al. (2022) for more general operators. Decid-
ing between which form of equations to use is not a matter of guesswork or experimentation; rather,  they are 
derived based on which discrete properties one wants to preserve. Deciding between different forms does not 
need to be a binary decision. In principle, one can use a “weighted” methodology and dynamically pick between 
different numerical fluxes to satisfy given criteria, similar to weighted essentially non-oscillatory schemes (Liu 
et  al.,  1994). Another option is to switch between different flux formulations at a fixed schedule in time for 
efficiency.

Transitioning from split forms to flux-differencing allows for extra flexibility in the design of conservative 
numerical methods. In particular, it is possible to take other averages, including logarithmic or density-weighted 
averaging, for example,

{𝜌𝜌}ln =
𝜌𝜌𝑖𝑖′ − 𝜌𝜌𝑖𝑖

ln 𝜌𝜌𝑖𝑖′ − ln 𝜌𝜌𝑖𝑖
 (23)

{𝑢𝑢}𝜌𝜌 =

√

𝜌𝜌𝑖𝑖′𝑢𝑢𝑖𝑖′ +
√

𝜌𝜌𝑖𝑖𝑢𝑢𝑖𝑖

√

𝜌𝜌𝑖𝑖′ +
√

𝜌𝜌𝑖𝑖

 (24)

and retain conservation as well as higher-order accuracy, see Fisher and Carpenter (2013). Furthermore, one can 
refrain from using a higher-order method within a control volume and use lower-order methods instead. This 
perspective is a valuable consideration to keep in mind when implementing subgrid-scale parameterizations or 
adaptive shock-capturing schemes.

The generalization to multiple dimensions, systems of equations, vector fields, and curvilinear coordinates 
is straightforward under a proper interpretation of the averaging operator 𝐴𝐴 {⋅} and index juggling. The most 
general method is outlined by Chan (2018) and Waruszewski et al. (2022), but here we focus on a simplified 
two-dimensional scenario. For example, let uij represent the nodal values of a two dimensional vector u whose 
components are 𝐴𝐴 𝒖𝒖 = 𝑢𝑢

𝑥𝑥
�̂�𝒙 + 𝑢𝑢

𝑦𝑦
�̂�𝒚 with similar considerations for a vector field v in an element of size [−1, 1] 2, then


1 = {𝒖𝒖},  2 = {𝒖𝒖⊗ 𝒗𝒗}, and

3 = {𝒖𝒖}⊗ {𝒗𝒗} (25)

[

∇ ⋅ 
1
]

𝑖𝑖𝑖𝑖
= 2

∑

𝑖𝑖′

𝐷𝐷
𝑥𝑥

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑥𝑥

𝑖𝑖′𝑖𝑖
+ 𝑢𝑢

𝑥𝑥

𝑖𝑖𝑖𝑖

2

)

+ 2
∑

𝑖𝑖′

𝐷𝐷
𝑦𝑦

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑦𝑦

𝑖𝑖𝑖𝑖′
+ 𝑢𝑢

𝑦𝑦

𝑖𝑖𝑖𝑖

2

)

 (26)

[

∇ ⋅ 
2
]𝑥𝑥

𝑖𝑖𝑖𝑖
= 2

∑

𝑖𝑖′

𝐷𝐷
𝑥𝑥

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑥𝑥

𝑖𝑖′𝑖𝑖
𝑣𝑣
𝑥𝑥

𝑖𝑖′𝑖𝑖
+ 𝑢𝑢

𝑥𝑥

𝑖𝑖𝑖𝑖
𝑣𝑣
𝑥𝑥

𝑖𝑖𝑖𝑖

2

)

+ 2
∑

𝑖𝑖′

𝐷𝐷
𝑦𝑦

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑥𝑥

𝑖𝑖𝑖𝑖′
𝑣𝑣
𝑦𝑦

𝑖𝑖𝑖𝑖′
+ 𝑢𝑢

𝑥𝑥

𝑖𝑖𝑖𝑖
𝑣𝑣
𝑦𝑦

𝑖𝑖𝑖𝑖

2

)

 (27)
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[

∇ ⋅ 
2
]𝑦𝑦

𝑖𝑖𝑖𝑖
= 2

∑

𝑖𝑖′

𝐷𝐷
𝑥𝑥

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑦𝑦

𝑖𝑖′𝑖𝑖
𝑣𝑣
𝑥𝑥

𝑖𝑖′𝑖𝑖
+ 𝑢𝑢

𝑦𝑦

𝑖𝑖𝑖𝑖
𝑣𝑣
𝑥𝑥

𝑖𝑖𝑖𝑖

2

)

+ 2
∑

𝑖𝑖′

𝐷𝐷
𝑦𝑦

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑦𝑦

𝑖𝑖𝑖𝑖′
𝑣𝑣
𝑦𝑦

𝑖𝑖𝑖𝑖′
+ 𝑢𝑢

𝑦𝑦

𝑖𝑖𝑖𝑖
𝑣𝑣
𝑦𝑦

𝑖𝑖𝑖𝑖

2

)

 (28)

[

∇ ⋅ 
3
]𝑥𝑥

𝑖𝑖𝑖𝑖
= 2

∑

𝑖𝑖′

𝐷𝐷
𝑥𝑥

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑥𝑥

𝑖𝑖′𝑖𝑖
+ 𝑢𝑢

𝑥𝑥

𝑖𝑖𝑖𝑖

2

)(

𝑣𝑣
𝑥𝑥

𝑖𝑖′𝑖𝑖
+ 𝑣𝑣

𝑥𝑥

𝑖𝑖𝑖𝑖

2

)

+ 2
∑

𝑖𝑖′

𝐷𝐷
𝑦𝑦

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑥𝑥

𝑖𝑖𝑖𝑖′
+ 𝑢𝑢

𝑥𝑥

𝑖𝑖𝑖𝑖

2

)(

𝑣𝑣
𝑦𝑦

𝑖𝑖𝑖𝑖′
+ 𝑣𝑣

𝑦𝑦

𝑖𝑖𝑖𝑖

2

)

 (29)

[

∇ ⋅ 
3
]𝑦𝑦

𝑖𝑖𝑖𝑖
= 2

∑

𝑖𝑖′

𝐷𝐷
𝑥𝑥

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑦𝑦

𝑖𝑖′𝑖𝑖
+ 𝑢𝑢

𝑦𝑦

𝑖𝑖𝑖𝑖

2

)(

𝑣𝑣
𝑥𝑥

𝑖𝑖′𝑖𝑖
+ 𝑣𝑣

𝑥𝑥

𝑖𝑖𝑖𝑖

2

)

+ 2
∑

𝑖𝑖′

𝐷𝐷
𝑦𝑦

𝑖𝑖𝑖𝑖′

(

𝑢𝑢
𝑦𝑦

𝑖𝑖𝑖𝑖′
+ 𝑢𝑢

𝑦𝑦

𝑖𝑖𝑖𝑖

2

)(

𝑣𝑣
𝑦𝑦

𝑖𝑖𝑖𝑖′
+ 𝑣𝑣

𝑦𝑦

𝑖𝑖𝑖𝑖

2

)

 (30)

where 𝐴𝐴 𝐴𝐴
𝑥𝑥

𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

𝑦𝑦

𝑖𝑖𝑖𝑖
 represent the components of the differentiation matrix in the x-direction and y-direction, 

respectively. Similarly 𝐴𝐴 [∇ ⋅  ]𝑥𝑥
𝑖𝑖𝑖𝑖
 and 𝐴𝐴 [∇ ⋅  ]

𝑦𝑦

𝑖𝑖𝑖𝑖
 represent the flux-divergence of the tensor flux in the x-direction 

and y-direction, respectively. In summary, the averaging prescription changes to “average along the coordinate 
direction” depending on which derivative is being taken. There are restrictions in the treatment of metric terms 
for curvilinear coordinates, see Winters et al. (2021), Waruszewski et al. (2022) for details.

The flux-differencing formulation extends to non-conservative terms such as ρ∂xϕ as shown by Renac (2019) and 
Waruszewski et al. (2022). To see this we introduce the jump notation

⟦Φ⟧ =
Φ𝑖𝑖′ − Φ𝑖𝑖

2
. (31)

Letting ρi be a discretized density field and Φi be a discretized geopotential, we get

[

𝜕𝜕𝑥𝑥(({𝜌𝜌} − ⟦𝜌𝜌⟧)⟦Φ⟧)
]

𝑖𝑖
= 2

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′

(

𝜌𝜌𝑖𝑖′ + 𝜌𝜌𝑖𝑖 − (𝜌𝜌𝑖𝑖′ − 𝜌𝜌𝑖𝑖)

2

)

(

Φ𝑖𝑖′ − Φ𝑖𝑖

2

)

= 𝜌𝜌𝑖𝑖

∑

𝑖𝑖′

𝐷𝐷𝑖𝑖𝑖𝑖′Φ𝑖𝑖′ , (32)

which is a discretization of ρ∂xΦ. We warn that the “numerical flux” 𝐴𝐴  = ({𝜌𝜌} − ⟦𝜌𝜌⟧)⟦Φ⟧ does not satisfy the 
symmetry condition Equation 21 and thus we will call it a “non-conservative flux.” We include this as a part of 
our total numerical flux, with the observation that any “jump terms” in the volume contribution to the numerical 
flux are distinguished as being associated with non-conservative terms.

2.1. Numerical Fluxes for the Compressible Euler Equations With Gravity

The prognostic variables of the compressible Euler equations are density, momentum, and, as the thermodynamic 
variable, total energy. The equations are

𝜕𝜕𝑡𝑡𝜌𝜌 + ∇ ⋅ (𝜌𝜌𝒖𝒖) = 0, (33)

𝜕𝜕𝑡𝑡(𝜌𝜌𝒖𝒖) + ∇ ⋅ (𝒖𝒖⊗ 𝜌𝜌𝒖𝒖 + 𝑝𝑝𝕀𝕀) = −𝜌𝜌∇Φ + 𝜌𝜌𝒖𝒖(𝜌𝜌𝜌 𝜌𝜌𝒖𝒖𝜌 𝜌𝜌𝜌𝜌)𝜌 (34)

𝜕𝜕𝑡𝑡(𝜌𝜌𝜌𝜌) + ∇ ⋅ (𝒖𝒖(𝑝𝑝 + 𝜌𝜌𝜌𝜌)) = 𝜌𝜌𝜌𝜌(𝜌𝜌𝜌 𝜌𝜌𝒖𝒖𝜌 𝜌𝜌𝜌𝜌)𝜌 (35)

where Φ is the geopotential, 𝐴𝐴 𝜌𝜌𝒖𝒖 are momentum sources (e.g., the Coriolis force), 𝐴𝐴 𝜌𝜌𝜌𝜌 constitutes sources of energy 
(e.g., radiation), and 𝐴𝐴 𝕀𝕀  is the rank-3 identity matrix. Total energy is defined as the sum of kinetic, potential, and 
internal energy,

𝜌𝜌𝜌𝜌 =
1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ + 𝑐𝑐𝑣𝑣𝜌𝜌𝜌𝜌 𝜌 (36)

where cv is the specific heat capacity of dry air at constant volume. Temperature is diagnosed from the prognostic 
variables and pressure using the ideal gas law, that is,

𝑇𝑇 =
1

𝑐𝑐𝑣𝑣𝜌𝜌

(

𝜌𝜌𝜌𝜌 −
1

2
𝜌𝜌‖𝒖𝒖‖

2 − 𝜌𝜌Φ

)

and 𝑝𝑝 = 𝜌𝜌𝜌𝜌𝑑𝑑𝑇𝑇 𝑇 (37)

This set of equations includes processes often filtered out in atmospheric general circulation models (AGCMs), 
such as sound waves. Retaining additional physics is key if the model is used for coarse resolution AGCM 
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simulations, cloud-resolving high-resolution AGCM simulations, and high-resolution LES of boundary layers. The 
flexibility is especially crucial for simulating other planetary bodies or analogous “small-planet” versions of Earth.

To solve the compressible Euler equations in three-dimensional domains, we use the FDDG formulation of 
Chan (2018) and Waruszewski et al. (2022) and construct metric terms as outlined by D. A. Kopriva (2006). See 
the review by G. J. Gassner and Winters (2021) for a general overview of the FDDG method.

The choice of numerical flux is critical in guaranteeing the stability of the simulations. As mentioned, FDDG 
allows for a selection of numerical fluxes for the interior of the control volume. In addition, there is flexibility in 
the choice of numerical flux for any interface between elements, that is, a flux along the gravity-aligned direction 
need not be the same as a flux orthogonal to the direction of gravity.

A kinetic energy preserving (KEP) volume flux greatly enhances the flow's nonlinear stability; see G. J. Gassner 
et al. (2016a) for an explanation of this property. This is especially important for simulating highly underresolved 
turbulent flows, as is typical in geophysical fluid dynamics. We find the KEP property to be the key feature that 
greatly increases the robustness of simulations. Stated succinctly, a numerical flux satisfies the KEP property if 
the discrete kinetic energy equation mimics the continuous kinetic energy equation. The importance of preserving 
the discrete algebraic properties of the kinetic energy equation has been commented on before (Zang, 1991).

Numerical fluxes that do not satisfy the KEP property can have terms in the discrete kinetic energy equation that 
correspond to energy injection due to transport, a manifestation of aliasing errors. It is serendipitous that there 
are a large class of numerical fluxes that satisfy this property, but it is especially worth noting that traditional DG 
methods do not have the KEP property when applied to geophysically relevant simulations, leading to stability 
problems in underresolved flows. In order to control this error, past methods had to use numerical filters, explicit 
dissipation, or overintegration strategies. None of these corrections are necessary if one just simply uses an 
FDDG formulation that automatically satisfies the KEP property.

Due to the presence of gravity in geophysical flows, it is natural to require a flux with a kinetic plus potential 
energy preserving property, which we will denote as KPEP. This choice allows for the discrete equations to be 
mimetic of the kinetic + potential energy equations (in the absence of sources in the momentum equation)

𝜕𝜕𝑡𝑡

(

1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ

)

= −∇ ⋅

(

𝒖𝒖

[

1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ + 𝑝𝑝

])

+ 𝑝𝑝∇ ⋅ 𝒖𝒖. (38)

We build a discretization that satisfies this property in two steps. The first step is to choose a KEP flux for the 
conservative terms. The second step is to modify the non-conservative gravity term so that the discrete equations 
are mimetic. Specifically, we choose the Kennedy-Gruber flux (Kennedy & Gruber, 2008) with the following 
modification to the gravity source term for all simulations,

𝜌𝜌 = {𝜌𝜌}{𝒖𝒖} (39)

𝜌𝜌𝒖𝒖 = {𝜌𝜌}{𝒖𝒖}⊗ {𝒖𝒖} + {𝑝𝑝}𝕀𝕀 + {𝜌𝜌}⟦Φ⟧𝕀𝕀 (40)

𝜌𝜌𝜌𝜌 = {𝒖𝒖}({𝜌𝜌}{𝜌𝜌} + {𝑝𝑝}), (41)

where the fluxes 𝐴𝐴 𝜌𝜌 , 𝐴𝐴 𝜌𝜌𝒖𝒖 , and 𝐴𝐴 𝜌𝜌𝜌𝜌 are the associated numerical fluxes for density, momentum, and total energy. The 
modification to the gravity source term was motivated by combining the entropy stable scheme of Waruszewski 
et al. (2022) with the Kennedy-Gruber flux. Ultimately the justification is that the flux satisfies the KPEP prop-
erty, as shown in A3 in Appendix A. The non-conservative flux is equivalent to rewriting the gravity source 
term  as

𝜌𝜌∇Φ =
1

2
(∇(𝜌𝜌Φ) − Φ∇𝜌𝜌 + 𝜌𝜌∇Φ). (42)

For stability the KEP property is the key, but without the KPEP property there is a spurious source of gravita-
tional energy. The KEP flux works against this spurious source to stabilize the simulations in the absence of the 
KPEP property. Thus we use a KPEP flux to prevent any potential issues.

Less innovation is required for the interface fluxes since simulations are robust with respect to many choices, 
for example, a central flux with a Rusanov penalty suffices for all simulations; however, we use the fluxes from 

 19422466, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003527, W
iley O

nline L
ibrary on [25/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

SOUZA ET AL.

10.1029/2022MS003527

9 of 24

Equations 40–42 as the “central” part of the interface flux and add a penalty 
term either as a Roe flux or a Rusanov flux (Hesthaven & Warburton, 2007; 
Roe, 1981). The specific choice is given in the respective sections. Further 
numerical details and formulas are given in Appendix A.

3. Numerical Experiments
Simulations are performed in a Julia-based open-source codebase that can 
exploit heterogeneous and distributed CPU/GPU architectures (Besard, 
Churavy, Edelman, & Sutter, 2019; Besard, Foket, & De Sutter, 2019; Bezanson 
et al., 2017). Although the DG method is well suited for parallel-computing 
architectures (D. S. Abdi et al., 2019; Sridhar et al., 2021), the scale of our 
problem allowed us to perform all simulations on a single Nvidia Titan V 
GPU. All plots in this text were generated using the Julia package Makie.jl 
(Danisch & Krumbiegel, 2021).

In the following subsections, we illustrate the ability of FDDG methods to 
simulate

1.  Convection in a dry boundary layer.
2.  The dry atmospheric circulation in an Earth-like domain.

3.  The dry atmospheric circulation on a small Earth.

The domain for the first simulation is a horizontally periodic Cartesian box, for the second simulation an Earth-
like thin spherical shell, and for the third simulation a spherical shell with a 20 times decreased planetary radius 
and increased rotation rate.

Nonetheless, the same computational kernels are used for all simulations. The connectivity between the 
elements and metric terms is the only change to transform from one domain to another. Explicit Runge-Kutta 
timestepping is used for the convective boundary layer and the small-Earth simulations. In addition, for 
computational efficiency, we implicitly timestep vertical acoustic and gravity wave modes in the Earth-like 
domain.

3.1. Dry Convection in the Atmospheric Boundary Layer

We start by simulating a dry atmospheric boundary layer. The following simulation is similar in spirit to Margolin 
et al. (1999), but with additional simplifications. All parameters for the simulation and their physical meaning are 
summarized in Table 1. We use a cubic domain of volume L 3 with periodic boundary conditions in the horizontal 
direction and no-flux, no-penetration boundary conditions in the vertical direction. The geopotential is Φ = gz 
where z is the vertical coordinate and x, y are the horizontal coordinates.

For our initial condition, we choose a linear potential temperature profile

𝜃𝜃(𝑧𝑧) = 𝑇𝑇𝑠𝑠 + Δ𝜃𝜃
𝑧𝑧

𝐿𝐿
, (43)

which, when combined with the ideal gas law and hydrostatic balance,

𝜌𝜌𝜌𝜌𝑑𝑑𝑇𝑇 = 𝑝𝑝𝑝 𝑝𝑝 = 𝑇𝑇

(

𝑝𝑝0

𝑝𝑝

)𝜌𝜌𝑑𝑑∕𝑐𝑐𝑝𝑝

𝑝 and 𝜕𝜕𝑧𝑧𝑝𝑝 = −𝜌𝜌𝜌𝜌𝑝 (44)

implies that pressure is

𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 0) = 𝑝𝑝0

(

−
𝑔𝑔𝑔𝑔

Δ𝜃𝜃𝜃𝜃𝑝𝑝
log(𝜃𝜃(𝑥𝑥)∕𝑇𝑇𝑠𝑠) + 1

)𝜃𝜃𝑝𝑝∕𝑅𝑅𝑑𝑑

. (45)

We also apply a random perturbation to the initially zero velocity field to induce a rapid transition to turbulence,

𝒖𝒖(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 0) = 0.01 (0𝑥 1)𝑥 (46)

Table 1 
Parameter Values for the Convective Boundary Layer Test Case

Parameter Value Unit Description

L 3 km Domain length

g 9.81 m 2 s −1 Gravitational constant

Rd 287 m 2 s −2 K −1 Gas constant for dry air

p0 10 5 kg m −1 s −2 Reference sea-level pressure

Ts 300 K Surface temperature

cv 717.5 J kg −1 K −1 Specific heat capacity of dry air 
at constant volume

cp 1,004.5 J kg −1 K −1 Specific heat capacity of dry air 
at constant pressure

ℓ 100 m Radiative length scale

𝐴𝐴  100 m 3 s −3 Radiative forcing magnitude

Δθ 10 K Potential temperature difference 
from top to bottom
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where 𝐴𝐴   is a random normal variable at each grid point. Thus the initial 
condition for total energy is

𝜌𝜌𝜌𝜌(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 0) =
1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ + 𝑐𝑐𝑣𝑣𝜌𝜌𝜌𝜌 (47)

where cv is the specific heat capacity of dry air at constant volume.

We apply a radiative forcing to drive convective instability. The resulting 
equations are

𝜕𝜕𝑡𝑡𝜌𝜌 + ∇ ⋅ (𝜌𝜌𝒖𝒖) = 0 (48)

𝜕𝜕𝑡𝑡𝜌𝜌𝒖𝒖 + ∇ ⋅ (𝒖𝒖⊗ 𝜌𝜌𝒖𝒖 + 𝑝𝑝𝕀𝕀) = −𝜌𝜌𝜌𝜌 𝜌𝜌𝜌 (49)

𝜕𝜕𝑡𝑡𝜌𝜌𝜌𝜌 + ∇ ⋅ (𝒖𝒖[𝜌𝜌𝜌𝜌 + 𝑝𝑝]) = 𝜌𝜌


𝓁𝓁

exp(−𝑧𝑧∕𝓁𝓁). (50)

We use a Kennedy-Gruber flux for the volume terms and a Kennedy-Gruber 
flux with a Roe flux penalty term for the interface numerical fluxes 
(Kennedy & Gruber, 2008); see Appendix A for details. For time-stepping, 
the fourth-order low storage 14-stage Runge-Kutta method of Niegemann 
et  al.  (2012) is employed since it offers the fastest time-to-solution. The 
sound waves are resolved in the simulation. We emphasize that we have not 
included any viscosity or diffusivity and solely rely on the numerical dissipa-
tion of the FDDG method for stability. Although we use implicit LES (ILES) 
for modeling convection in the interior of the domain, it is doubtful that ILES 
can capture wall-effects, and a more realistic simulation would need to be 
supplemented with wall-models.

The domain is partitioned into 24 3 elements, each of which has three-dimensional fourth-order polynomials, 
leading to a total of 120 3 degrees of freedom. The smallest grid spacing between interpolation points within an 
element is 21 m, leading to a timestep size of Δt = 0.11 s to ensure compliance with the acoustic CFL limit.

The radiative heating is strongest near the surface, leading to air parcels to become buoyant and rise. As the plumes 
rise, they laterally entrain air from the surrounding environment; we expect the fluid to develop a well-mixed 
region of potential temperature near the surface. As the plumes move through the well-mixed layer, they eventu-
ally reach a stably-stratified region and overshoot their level of neutral buoyancy. The plumes drum on the strat-
ified layer above, developing a layer of downward potential temperature fluxes and high potential temperature 
variance. This process erodes the stratification, leading to diffusive growth of the well-mixed region over time.

We estimate the growth of the well-mixed region from classic energetic arguments as done by, for example, 
Stull (1988). First, we observe that the flux of potential temperature is approximately 𝐴𝐴 𝜃𝜃 = ∕𝑐𝑐𝑝𝑝 ≈ 0.1

[

K m s−1
]

 . 
We define the boundary layer height to be the height of maximum horizontally-averaged stratification. The 
boundary layer height at a given moment in time, t, is given by the empirical scaling law

ℎ ∝

√

𝑡𝑡
𝜃𝜃𝐿𝐿

Δ𝜃𝜃
 (51)

where the entrainment layer modifies the constant of proportionality. Without accounting for the entrainment 

layer, one derives 𝐴𝐴 𝐴(𝑡𝑡) =

√

2𝑡𝑡
𝜃𝜃𝐿𝐿

Δ𝜃𝜃
 as in Stull (1988). Accounting for the entrainment layer seems to only modify 

the constant “2”, for example, (Van Roekel et al., 2018), as opposed to modifying the scaling law.

Specifically, we compare the boundary layer height given by 𝐴𝐴 𝐴(𝑡𝑡) =

√

𝐶𝐶𝑡𝑡
𝜃𝜃𝐿𝐿

Δ𝜃𝜃
 , with C = 3 as in A. N. Souza 

et al.  (2020), to that of the simulation in Figure 3. We see that the simulation agrees well with the empirical 
scaling law. This agreement suggests that the implicit dissipation mechanisms of the FDDG method enable 
subgrid-scale modeling, similar to other methods such as a Smagorinsky closure or a non-oscillatory scheme 
(Margolin et al., 1999; Van Roekel et al., 2018).

Figure 3. Convective Boundary Layer. The boundary layer height growth 
over time. Here we compare the empirical scaling law in red, given by 

𝐴𝐴 𝐴(𝑡𝑡) =

√

3𝑡𝑡
𝜃𝜃𝐿𝐿

Δ𝜃𝜃
 , to one calculated from the maximum potential temperature 

gradient in blue. A spin-up characterizes the first hour of simulation into 
the turbulent state. After the initial spin-up the simulation latches on to the 
empirical scaling law.
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An instantaneous snapshot of the simulation after 5 hr is typified by Figure 4. The three-dimensional figure shows 
the mixed layer potential temperature as transparent, thereby emphasizing potential temperature anomalies. The 
visualization reveals the three-dimensional convective structure and small scorching plumes emanating from the 
surface. The top of the domain is chosen to be the height at which the horizontally averaged potential temperature 
flux is most negative.

To the right of the three-dimensional figure are horizontal averages of potential temperature (top), vertical poten-
tial temperature flux (middle), and potential temperature variance (bottom). The horizontal average of potential 
temperature displays a well-mixed layer in the bottom kilometer of the domain, capped by an entrainment layer 
of enhanced stratification before easing into the background stratification. The vertical advective flux exhibits 
the expected linear structure in the mixed layer and is negative in the entrainment region. The negative flux arises 
from an anti-correlation between the vertical velocity and potential temperature, associated with plumes over-
shooting their region of neutral buoyancy. On average, this entrainment produces a negative flux whose maximum 
is approximately 17% of the input heat flux Qθ. The negative flux minima is consistent with those commonly 
found in the literature, for example (Margolin et al., 1999; Siebesma et al., 2007; Van Roekel et al., 2018), where 
the most negative flux is between 10% and 20% of the heat input. The oscillations above the entrainment layer 
are due to gravity waves reflecting from the top of the domain. Furthermore, the plot shows that the temperature 
variance is largest in the entrainment layer.

3.2. Atmospheric Dynamical Core: The Held-Suarez Test

We next consider the GCM benchmark test proposed by Held and Suarez (1994), HS94 hereafter. The formula-
tion of the problem allows for flexibility in hydrostatic versus non-hydrostatic dynamics, dissipation mechanisms, 
prognostic variables, and boundary conditions. We choose to use an equation set that retains fully compressible 
dynamics and is formulated in terms of density, total energy, and Cartesian momentum as the prognostic varia-
bles, yielding the equations

Figure 4. Convective Boundary Layer. A snapshot of potential temperature and its horizontally averaged statistics. The three-dimensional plot is a volume-rendering 
of the potential temperature where the white values on the color bar to the left are transparent in the volume-rendering visualization in the middle. Only the lower 
1.2 km of the domain are shown in the volume rendering. The statistics on the right of the plot are horizontal averages of potential temperature (top), vertical potential 
temperature eddy flux (middle), potential temperature variance (bottom) at the same moment in time in the lower 2 km of the domain. All visualizations are shown at 
the final time of the simulation, t = 5 hr.
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𝜕𝜕𝑡𝑡𝜌𝜌 + ∇ ⋅ (𝜌𝜌𝒖𝒖) = 0 (52)

𝜕𝜕𝑡𝑡(𝜌𝜌𝒖𝒖) + ∇ ⋅ (𝒖𝒖⊗ 𝜌𝜌𝒖𝒖 + 𝑝𝑝𝕀𝕀) = −𝜌𝜌∇Φ − 2𝛀𝛀 × 𝜌𝜌𝒖𝒖 + 𝐬𝐬𝜌𝜌𝒖𝒖(𝜌𝜌𝜌 𝜌𝜌𝒖𝒖𝜌 𝜌𝜌𝜌𝜌) (53)

𝜕𝜕𝑡𝑡(𝜌𝜌𝜌𝜌) + ∇ ⋅ (𝒖𝒖(𝑝𝑝 + 𝜌𝜌𝜌𝜌)) = 𝑠𝑠𝜌𝜌𝜌𝜌(𝜌𝜌𝜌 𝜌𝜌𝒖𝒖𝜌 𝜌𝜌𝜌𝜌) (54)

where 𝐴𝐴 Φ = 2𝐺𝐺𝐺𝐺𝑃𝑃𝑟𝑟
−1

planet
− 𝐺𝐺𝐺𝐺𝑃𝑃𝑟𝑟

−1 is the geopotential, 𝐴𝐴 𝛀𝛀 = Ω�̂�𝐳 is the planetary angular velocity, and 𝐴𝐴 �̂�𝐳 is the 
direction of the planetary axis of rotation. We do not make the traditional approximation, which assumes a thin 
atmospheric shell in which the distance from any point in the atmosphere to the center of the planet is taken to be 
equal to the planetary radius, leading to the Coriolis force having only horizontal components.

The HS94 forcing is applied to momentum and energy as follows

𝐬𝐬𝜌𝜌𝒖𝒖 = −𝑘𝑘𝑣𝑣(𝕀𝕀 − �̂�𝑟 𝑟 �̂�𝑟)𝜌𝜌𝒖𝒖 (55)

𝑠𝑠𝜌𝜌𝜌𝜌 = −𝑘𝑘𝑇𝑇 𝜌𝜌𝜌𝜌𝑣𝑣

(

𝑇𝑇 − 𝑇𝑇equilibrium

)

, (56)

where Tequilibrium is the radiative equilibrium temperature depending on latitude (φ) and pressure σ = p/p0,

𝑇𝑇equilibrium (𝜑𝜑𝜑 𝜑𝜑) = max
(

𝑇𝑇min𝜑
[

𝑇𝑇equator − Δ𝑇𝑇𝑦𝑦sin
2
(𝜑𝜑) − Δ𝜃𝜃𝑧𝑧ln(𝜑𝜑)cos(𝜑𝜑)

]

𝜑𝜑
𝑅𝑅𝑑𝑑∕𝑐𝑐𝑝𝑝

)

𝜑 (57)

and the parameters kv, kT are the inverse timescales for momentum damping and temperature relaxation, respec-
tively, with

𝑘𝑘𝑣𝑣 = 𝑘𝑘𝑓𝑓Δ𝜎𝜎 and 𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑎𝑎 + (𝑘𝑘𝑠𝑠 − 𝑘𝑘𝑎𝑎)Δ𝜎𝜎cos
4(𝜑𝜑), (58)

with 𝐴𝐴 Δ𝜎𝜎 = max{0, (𝜎𝜎 − 𝜎𝜎𝑏𝑏)∕(1 − 𝜎𝜎𝑏𝑏)} . The temperature and pressure are diagnosed from total energy and the 
ideal gas law,

𝑇𝑇 =
1

𝑐𝑐𝑣𝑣𝜌𝜌

(

𝜌𝜌𝜌𝜌 −
1

2
𝜌𝜌‖𝒖𝒖‖

2 − 𝜌𝜌Φ

)

and 𝑝𝑝 = 𝜌𝜌𝜌𝜌𝑑𝑑𝑇𝑇 𝑇 (59)

The forcing terms differ only in quantitatively irrelevant aspects from the original formulation in HS94. In 
particular, we choose a constant pressure p0 in the definition of σ instead of the instantaneous surface pressure. 
The parameter values are summarized in Table 2.

The domain is a piecewise polynomial approximation to a thin spherical shell of radius rplanet and height ztop. 
The thin spherical domain is partitioned into curved elements and uses an isoparametric representation of the 
domain and the cubed sphere mapping by Ronchi et al. (1996). In essence, this choice represents the domain as 
a piecewise polynomial function where the order of the polynomial corresponds to the order of the discretization 
(Winters et al., 2021). The metric terms are treated as in D. A. Kopriva (2006) and satisfy the discrete property 
that the divergence of a constant vector field is zero, that is, the metric terms are free-stream preserving. The use 
of an isoparametric representation of the sphere with free-stream preserving metrics has a few subtleties. Since 
the vertical and horizontal directions are no longer discretely orthogonal, one must distinguish covariant and 
contravariant vertical directions.

We use no-flux boundary conditions for density and total energy. We use free-slip boundary conditions for the 
horizontal momenta and no-penetration boundary conditions for the vertical momentum. Our initial condition is a 
fluid that starts from rest in an isothermal atmosphere. We take the global temperature to be TI = 285 K, leading to

𝑝𝑝(𝑟𝑟) = 𝑝𝑝0exp

(

−
Φ(𝑟𝑟) − Φ

(

𝑟𝑟planet

)

𝑅𝑅𝑑𝑑𝑇𝑇𝐼𝐼

)

and 𝜌𝜌(𝑟𝑟) =
1

𝑅𝑅𝑑𝑑𝑇𝑇𝐼𝐼

𝑝𝑝(𝑟𝑟). (60)

We use implicit time-stepping in order to numerically filter vertically propagating sound waves and gravity waves. 
Specifically, we use the second-order Runge-Kutta IMEX scheme of Giraldo et al. (2013), but modify Equation 
3.9 of their work by choosing a32 = 1/2 for an enhanced stability region (see ARKB(2, 3, 2) in Giraldo (2020)). 
We use the Jacobian of both the surface and volume flux in the vertical for the implicit time-stepping component; 
see A2 in Appendix A for details. We linearize about the previous timestep, update the Jacobian for every column 
every 20  min of simulated time, and factorize it using a banded LU decomposition (Golub & Loan,  2013). 
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Horizontal acoustic modes then limit the timestep. The largest Mach number, the ratio of the advective speed and 
the soundspeed, for the flow is roughly 0.25 in this simulation.

Aside from the inherent numerical dissipation resulting from the interface flux terms and implicit time-stepping, 
we use no additional forms of damping such as those in Jablonowski and Williamson (2011). In particular, we 
do not use any form of viscosity/hyperviscosity for small-scale damping. Furthermore, we do not include any 
divergence damping or filters. The method remains conservative up to rounding errors from finite-precision arith-
metic. For the Held-Suarez benchmark, only density is conserved since it has no sources.

We run the HS94 test case with 6 × 10 2 elements in the horizontal on an equiangular cubed sphere, eight evenly 
spaced elements in the vertical, polynomial order four within each element, totaling at 6 × 50 2 degrees of freedom 
in the horizontal and 40 degrees of freedom in the vertical. The minimum grid spacing is 120 km in the horizontal 
and 650 m in the vertical. We choose a timestep of 55 s to keep within the horizontal acoustic CFL limit. We 
discard the first 200 days of the simulation as spinup and average over the last 1,000 days, as in HS94. We gather 
statistics by interpolating the cubed sphere grid to spherical coordinates and converting the Cartesian momentum 
to spherical velocities. As usual, we denote the zonal velocity component by u, the meridional velocity by v, and 
the vertical velocity by w. We gather statistics in height coordinates and for plotting we use the zonal and temporal 
average of pressure at the equator as the height.

In Figure  5 we show the long-time average of the zonal-mean zonal wind 〈u〉, temperature 〈T〉, tempera-
ture variance 〈T′T′〉, eddy momentum flux 〈u′v′〉, eddy heat flux 〈v′T′〉, and horizontal eddy kinetic energy 
0.5〈u′u′ + v′v′〉. The choice of fields is to directly compare with Figure 1 of Wan et  al.  (2008). The results 
here are in agreement with those reported in the literature (Chen et al., 1997; Held & Suarez, 1994; Ringler 
et al., 2000; Ullrich & Jablonowski, 2012). For example, the peak in westerly winds, temperature variance, and 
eddy kinetic energy are all within 10% of published results. Perhaps the largest difference is in the meridional 
heat transport. In our simulations, the 〈v′T′〉 = −9 K m s −1 contour remains disconnected above and below the 
“stretched height” = 400 hPa line. This difference could be due to the use of height coordinates for averaging 
rather than pressure coordinates, since a zonal average over a surface of constant height is different than that of 
constant pressure.

Table 2 
Parameter Values for the Held-Suarez Test Case

Parameter Value Unit Description

𝐴𝐴  1 or 20 – Scaling parameter

ztop 3 × 10 4 m Atmosphere height

rplanet 𝐴𝐴 6.371 × 106∕ m Planetary radius

Rd 287 m 2 s −2 K −1 Gas constant for dry air

Ω 𝐴𝐴 2𝜋𝜋∕86400 ×  s −1 Coriolis magnitude

p0 1 × 10 5 kg m −1 s −2 Reference sea-level pressure

Tmin 200 K Minimum equilibrium temperature

Tequator 315 K Equatorial equilibrium temperature

σb 0.7 – Dimensionless damping height

cv 717.5 J kg −1 K −1 Specific heat capacity of dry air at constant volume

cp 1,004.5 J kg −1 K −1 Specific heat capacity of dry air at constant pressure

kf 𝐴𝐴 ∕86400 s −1 Damping scale for momentum

ka 𝐴𝐴 ∕(40 × 86400) s −1 Polar relaxation scale

ks 𝐴𝐴 ∕(4 × 86400) s −1 Equatorial relaxation scale

ΔTy 60 K Latitudinal temperature difference

Δθz 10 K Vertical temperature difference

G 6.67408 × 10 −11 kg −1 m 3 s −2 Gravitational constant

MP 𝐴𝐴 5.9722∕2 × 1024 kg Planetary mass

Note. The value 𝐴𝐴  = 1 corresponds to the standard test case, and 𝐴𝐴  = 20 is a small planet version of the Held-Suarez test case.
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For a fully compressible code it is more natural to use density-weighted averages (Favre averages), thus we 
also present those statistics in Figure 6. The color scale is the same as that of Figure 5, allowing for a direct 
comparison. We see that the density weighted statistics for mean quantities and eddy-statistics associated only 
with momentum are relatively unchanged with respect to the unweighted versions; however the eddy fluxes that 
include temperature appear to be noisier. For example, the density weighted eddy-heat flux exhibits oscillations 
near the equator, perhaps due to the need for longer averaging over the same time interval.

3.3. Small-Planet Held-Suarez

In addition to the typical HS94 configuration, we simulate a small planet with a large-scale climatology similar to 
that of HS94 by rescaling the equations in a manner similar to a DARE/hypohydrostatic rescaling of the equations 
as done by Kuang et al. (2005) and Pauluis et al. (2006), respectively. This rescaling is an exact similarity  trans-
formation of the hydrostatic primitive equations using the traditional approximation and thus only affects the 
balance between the non-hydrostatic and hydrostatic components of the flow. This test is similar to that proposed 
by Wedi and Smolarkiewicz (2009) with minor modifications.

We decrease the planetary radius by a factor of 𝐴𝐴  = 20 compared to Earth, increase the rotation rate by a factor of 
𝐴𝐴  , and decrease the mass of the planet by a factor of 𝐴𝐴 2 . Furthermore, we increase all relaxation timescales in the 

problem by a factor of 𝐴𝐴  . The atmospheric height and temperature equilibrium remain the same. The parameter 
values are tabulated in Table 2. We will justify these choices shortly.

Changing the planetary radius, increasing the rotation rate, and keeping the same temperature equilibrium results 
in a planetary model with a similar thermal wind. This result is a natural consequence of the rescaling being an 
exact similarity transformation for the hydrostatic primitive equations. Indeed the thermal wind, uthermal scales like

𝑢𝑢thermal ∼
Δ𝑇𝑇

ΩΔ𝐻𝐻
 (61)

Figure 5. Temporal and zonal average Held-Suarez statistics. The “stretched height” is a global rescaling of height with the long time and zonal average of pressure at 
the equator, mimicking the effect of using pressure coordinates for ease of comparison with figures in the literature. The long-time average uses the last 1,000 days of 
the simulation. We use eight evenly spaced elements in the vertical and 6 × 10 2 elements in the horizontal with a polynomial order four basis in each direction.
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where ΔT/ΔH is the latitudinal gradient of temperature. Observe that ΔH ∝ rplanet and recall that the equilibrium 
temperature distribution is unchanged from the original configuration. Thus both ΔT and ΩΔH remain constant, 
and the resulting thermal wind is approximately the same across the two simulations. Consequently, the Rossby 
number Ro ≡ uthermal/(2Ωrplanet) remains the same.

Changing the planetary mass is necessary to retain an Earth-like hydrostatically balanced state. The gradient of 
the geopotential scales like 𝐴𝐴 ∇Φ ∼ 𝑟𝑟

−2

planet
 and thus the planetary mass must scale by a factor of 𝐴𝐴 −2 to maintain the 

same force. We could have achieved a similar result by simply taking the geopotential to be Φ = gr, but we saw 
no need to use this linearization.

We keep the same number of grid points, 6 × 50 2 × 40 degrees of freedom, leading to a minimum grid spacing 
of 6 km in the horizontal and 650 m in the vertical. For the small planet, we use explicit time-stepping—the same 
low storage Runge-Kutta method of Niegemann et al. (2012)—which affords timesteps of size dt = 6.5 s, which 
corresponds to an acoustic Courant number of 3.6 in the vertical and 0.38 in the horizontal. Small timesteps are 
less of a limitation because planetary-scale dynamics are 𝐴𝐴  = 20 times faster than Earth's. Thus we only need 
to simulate 60 Earth days, which corresponds to 1,200 small-planet days. The initial condition uses the same 
formula as before, Equation 61. We discard the first 20% of the simulation and average over the rest.

Figure 7 shows that statistics are relatively unchanged with respect to those in Figure 5, except for the zonal 
velocity, which has a vigorous easterly flow along the equator. We attribute the change in the zonal mean clima-
tology of the zonal velocity to the increased vertical velocity, which in turn affects the non-traditional terms in 
the Coriolis force; these terms are not negligible in the small planet. See Marshall et al. (1997) for an explanation 
of the underlying physics in the ocean context. An enhanced easterly flow in the small planet configuration has 
been observed before. For example, see Figure 18 of Wedi and Smolarkiewicz (2009).

We confirm this statement by neglecting the non-traditional components of the planetary angular velocity,

Figure 6. Density weighted temporal and zonal average Held-Suarez statistics. The “stretched height” is a global rescaling of height with the long time and zonal 
average of pressure at the equator, mimicking the effect of using pressure coordinates for ease of comparison with figures in the literature. The long-time average uses 
the last 1,000 days of the simulation. We use eight evenly spaced elements in the vertical and 6 × 10 2 elements in the horizontal with a polynomial order four basis in 
each direction.
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𝛀𝛀traditional = (�̂�𝑟 ⋅𝛀𝛀)�̂�𝑟 (62)

and comparing the zonal mean velocity statistics of the three simulations in Figure 8. We do not modify the metric 
terms thus the approximation is inconsistent, nonetheless it serves to illustrate the point. We see that the zonal 
mean velocity statistic of the original HS94 setup corresponds to that of the small planet with the “traditional” 
planetary angular velocity but not that of the small planet with the full-planetary angular velocity. This effect is 
a consequence of the decreased aspect ratio of the vertical versus horizontal domain in the small planet, which in 
turn increases the magnitude of the vertical velocity by a factor 𝐴𝐴  . Stated differently, even though the full Coriolis 

Figure 7. Small Planet Held-Suarez. The long time and zonal average Held-Suarez statistics in a “small planet” configuration. The “stretched height” is a rescaling of 
height with the long time and zonal average of pressure at the equator, mimicking the effect of using pressure coordinates for ease of comparison with figures in the 
literature. Time averages are taken over the last 1,000 days of the simulation. We use eight evenly spaced elements in the vertical and 6 × 10 2 elements in the horizontal 
with a polynomial order four basis in each direction.

Figure 8. Small Planet Held-Suarez. A comparison between the long time and zonal average of the zonal velocity between three different configurations. The left-most 
plot is the typical HS94 setup utilizing the full Coriolis force, the middle plot is the small planet HS94 setup with the traditional approximation to the Coriolis force, and 
the right-most plot is the small planet with the full Coriolis force. We see that keeping the traditional approximation replicates the zonal velocity statistics of the Earth-
like planet at the expense of being unphysical with respect to the small planet.
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force is present in the Earth-like domain, the vertical velocity component is too weak to make a substantial differ-
ence, as expected for this test case.

We reemphasize no further code tuning is required to retain stability. Upon modification of the domain and 
appropriate parameters, the only necessary change was a reduction of timestep to stay within the acoustic CFL of 
the small planet. The ability to easily change planetary parameters allows for a systematic investigation of scaling 
laws of planetary systems with respect to rotation rates, planetary radii, and atmospheric heights.

4. Conclusions
We have presented the application of a FDDG method to an idealized dry atmosphere for local LES and global 
circulation modeling. We have shown that the statistics generated from using a fully-compressible code, with 
density, total energy, and Cartesian momentum as prognostic variables, are similar to other models in local and 
global settings. Furthermore, we did not require stabilization mechanisms outside those naturally afforded by the 
FDDG numerical method and time-stepping.

The main limitations of the numerical method are not associated with the spatial discretization per se but rather 
the need to develop efficient time-stepping strategies for modern computer architectures that can overcome limi-
tations induced by acoustic waves, especially in the presence of topography. Different architectures may neces-
sitate different algorithms to achieve an optimal time-to-solution. There are many approaches for obtaining a 
better time-to-solution that are worth exploring, for example, fully implicit time stepping (Nguyen et al., 2020) 
and multi-rate methods (Knoth & Wensch, 2014). Furthermore, switching between different flux-differencing 
methods in the vertical versus horizontal may yield larger timesteps due to better linearization properties (G. 
Gassner et al., 2020; Ranocha & Gassner, 2021). An alternative option is to use lower order methods, such as 
staggered grid finite volume or lower polynomial orders, for the implicit vertical discretization, which may yield 
a faster time-to-solution.

The present study is limited to an idealized dry atmosphere, and moisture, topography, and radiation are neces-
sary for realistic simulations. Positivity-preserving methods such as those outlined in Light and Durran (2016) 
need to be used, and topographic effects can also be handled Baldauf (2021). Previous studies of DG methods 
have involved designing numerical fluxes that preserve desired discrete properties. It would also be interesting to 
compare candidate methods for geophysical flows.

It is possible to bridge the gap between existing parameterizations and novel numerics by leveraging the sub-cell 
finite-volume interpretation of the FDDG method. This interpretation is similar to using a “physics grid” as in 
Herrington et al. (2019) but simpler in its implementation. Another option is to develop new parameterizations 
that leverage the subgrid-scale shape functions of the spectral element method, akin to using a higher-order 
moment closure.

Flux-Differencing DG methods are an interesting alternative discretization for Earth system modeling. They 
enable LES modeling with its natural subgrid-scale dissipation mechanisms, allow for flexible representation of 
the domain, and can exploit parallel hardware architectures. Developing efficient implicit timesteping methods 
in order to overcome the limitations due to gravity and sound waves are a remaining challenge, but we hope that 
the extra robustness and higher-order accuracy provided by FDDG methods will eventually allow for an overall 
simpler and more accurate method.

Appendix A: Discontinuous Galerkin Details
In this appendix, we collect choices of numerical fluxes and linear models. To highlight our choices, we use the 
compressible Euler equations with gravity,

𝜕𝜕𝑡𝑡𝜌𝜌 + ∇ ⋅ 𝜌𝜌𝒖𝒖 = 0 (A1)

𝜕𝜕𝑡𝑡𝜌𝜌𝒖𝒖 + ∇ ⋅ (𝜌𝜌𝒖𝒖⊗ 𝒖𝒖 + 𝑝𝑝𝕀𝕀) = −𝜌𝜌∇Φ (A2)

𝜕𝜕𝑡𝑡𝜌𝜌𝜌𝜌 + ∇ ⋅ (𝒖𝒖[𝜌𝜌𝜌𝜌 + 𝑝𝑝]) = 0 (A3)

(𝛾𝛾 − 1)

(

𝜌𝜌𝜌𝜌 −
1

2
𝜌𝜌‖𝒖𝒖‖

2 − 𝜌𝜌Φ

)

= 𝑝𝑝 (A4)
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where γ = 7/5 and Φ is the geopotential. The source terms that do not involve gradients are collocated with 
grid-points and require no further description.

To describe the numerical fluxes we use the same notation as G. J. Gassner et al.  (2016a). Thus for a scalar 
field ψ with + as the “exterior” value and − as the “interior” value (G. J. Gassner et al., 2016a; Hesthaven & 
Warburton, 2007), we take the averaging operator {⋅} and jump operator ⟦⋅⟧ to mean

{𝜓𝜓} ≡
𝜓𝜓

+ + 𝜓𝜓
−

2
and ⟦𝜓𝜓⟧ ≡

𝜓𝜓
+ − 𝜓𝜓

−

2
. (A5)

The averaging and jump operators are applied componentwise for vector and tensor Cartesian fields. We point out 
that our definition of jump, ⟦⋅⟧, has a factor of two that is different from most other conventions.

The flux-differencing and metric term implementations are done in skew-symmetric form as outlined by 
Chan (2018) and Waruszewski et al. (2022). The metric terms are constructed to be free-stream preserving (D. 
A. Kopriva, 2006; D. Kopriva, 2009).

A1. Numerical Fluxes

We decompose the numerical flux normal to an interface between elements into two components by using the 
flux above as the “central” component and a penalty term, which adds dissipation in a manner similar to upwind-
ing. For the “central part” of the interface terms we use the Kennedy-Gruber flux (Kennedy & Gruber, 2008),

𝜌𝜌 = {𝜌𝜌}{𝒖𝒖} (A6)

𝜌𝜌𝒖𝒖 = {𝜌𝜌}{𝒖𝒖}⊗ {𝒖𝒖} + {𝑝𝑝}𝕀𝕀 (A7)

𝜌𝜌𝜌𝜌 = {𝒖𝒖}({𝜌𝜌}{𝜌𝜌} + {𝑝𝑝}), (A8)

where 𝐴𝐴 𝕀𝕀  is the identity matrix. The nonconservative term is inconsequential since the geopotential Φ is continu-
ous along an interface, hence ⟦Φ⟧ = 0 on an interface. We choose different penalty terms for the vertical versus 
horizontal directions when evolving the compressible Euler-Equations on the sphere. Distinguishing between 
vertical and horizontal fluxes is natural given the anisotropy of the Earth-like computational domain: a spherical 
shell with radius 𝐴𝐴 

(

104
)

 kilometers and height 𝐴𝐴 (10) kilometers. This domain typically leads to pancake-like grid 
elements whose breadth is roughly 100 times its height.

In the direction associated with vertical face normals we use a Rusanov penalty whose wavespeed is based on a 
reference pressure and reference density. The reference density and pressure are updated every 20 min of simu-
lated time with the instantaneous values. Specifically we add the following numerical fluxes,

𝑐𝑐 =
√

𝛾𝛾𝛾𝛾ref∕𝜌𝜌ref, 
𝜌𝜌 = {𝑐𝑐}∞⟦𝜌𝜌⟧, 

𝜌𝜌𝒖𝒖 = {𝑐𝑐}∞⟦𝜌𝜌𝒖𝒖⟧, and
𝜌𝜌𝜌𝜌 = {𝑐𝑐}∞⟦𝜌𝜌𝜌𝜌⟧ (A9)

where 𝐴𝐴 {𝑐𝑐}∞ = max{𝑐𝑐+, 𝑐𝑐−} . In the directions orthogonal to the vertical direction we use Roe fluxes.

𝑐𝑐 =
√

𝛾𝛾𝛾𝛾∕𝜌𝜌 (A10)

𝑤𝑤1 = |{𝑢𝑢𝑛𝑛}𝜌𝜌 − {𝑐𝑐}𝜌𝜌|
(

⟦𝑝𝑝⟧ − {𝜌𝜌}𝜌𝜌{𝑐𝑐}𝜌𝜌[[𝑢𝑢𝑛𝑛]]
)

∕
(

2{𝑐𝑐}
2
𝜌𝜌

)

 (A11)

𝑤𝑤2 = |{𝑢𝑢𝑛𝑛}𝜌𝜌 + {𝑐𝑐}𝜌𝜌|
(

⟦𝑝𝑝⟧ − {𝜌𝜌}𝜌𝜌{𝑐𝑐}𝜌𝜌[[𝑢𝑢𝑛𝑛]]
)

∕
(

2{𝑐𝑐}
2
𝜌𝜌

)

 (A12)

𝑤𝑤3 = |{𝑢𝑢𝑛𝑛}𝜌𝜌|
(

⟦𝜌𝜌⟧ − ⟦𝑝𝑝⟧∕{𝑐𝑐}
2
𝜌𝜌

)

 (A13)

𝑤𝑤4 = |{𝑢𝑢𝑛𝑛}𝜌𝜌|{𝜌𝜌}𝜌𝜌 (A14)


𝜌𝜌 = 𝑤𝑤1 +𝑤𝑤2 +𝑤𝑤3 (A15)


𝜌𝜌𝒖𝒖 = 𝑤𝑤1

(

{𝒖𝒖}𝜌𝜌 − {𝑐𝑐}𝜌𝜌�̂�𝑛
)

+𝑤𝑤2

(

{𝒖𝒖}𝜌𝜌 + {𝑐𝑐}𝜌𝜌�̂�𝑛
)

+𝑤𝑤3{𝒖𝒖}𝜌𝜌 +𝑤𝑤4(⟦𝒖𝒖⟧ − [[𝑢𝑢𝑛𝑛]]�̂�𝑛) (A16)


𝜌𝜌𝜌𝜌 = 𝑤𝑤1

(

{(𝜌𝜌𝜌𝜌 + 𝑝𝑝)∕𝜌𝜌}
𝜌𝜌
− {𝑐𝑐}𝜌𝜌{𝑢𝑢𝑛𝑛}𝜌𝜌

)

+𝑤𝑤2

(

{(𝜌𝜌𝜌𝜌 + 𝑝𝑝)∕𝜌𝜌}
𝜌𝜌
+ {𝑐𝑐}𝜌𝜌{𝑢𝑢𝑛𝑛}𝜌𝜌

)

 (A17)
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+𝑤𝑤3

(

{𝒖𝒖}𝜌𝜌 ⋅ {𝒖𝒖}𝜌𝜌∕2 + Φ
)

+𝑤𝑤4

(

{𝒖𝒖}𝜌𝜌 ⋅ ⟦𝒖𝒖⟧ − {𝑢𝑢𝑛𝑛}𝜌𝜌[[𝑢𝑢𝑛𝑛]]
)

 (A18)

where the averaging, {⋅}ρ is

{𝜓𝜓}𝜌𝜌 =

√

𝜌𝜌+𝜓𝜓
+ +

√

𝜌𝜌−𝜓𝜓
−

√

𝜌𝜌+ +
√

𝜌𝜌−
 (A19)

for all fields ψ except for ρ in which case

{𝜌𝜌}𝜌𝜌 =
√

𝜌𝜌+𝜌𝜌−. (A20)

The variable 𝐴𝐴 𝐴𝐴𝐴 = 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) is the normal vector to a point on an element face (unit vectors of the contravariant 
basis) and 𝐴𝐴 𝐴𝐴𝑛𝑛 = 𝒖𝒖 ⋅ �̂�𝑛 is the velocity component normal to a face.

On the boundaries of the sphere we set the density and energy fluxes to zero and for momentum we use the exte-
rior + state and interior − state as

𝜌𝜌𝒖𝒖
+ = (𝕀𝕀 − 2�̂�𝑛 𝑛 �̂�𝑛)𝜌𝜌𝒖𝒖− (A21)

where 𝐴𝐴 𝐴𝐴𝐴 is the wall-normal unit vector. We then use central fluxes to compute the flux on the boundary. Equa-
tion A21 amounts to using the reflection principle on the wall-normal velocity, while also implementing no-flux 
boundary conditions for the tangential velocities. See Hesthaven and Warburton (2007) for further clarification 
on the reflection principle.

A2. Jacobian for Implicit Timestepping

To calculate the Jacobian of the compressible Euler equations with gravity it suffices to focus on the numerical 
flux,

𝜌𝜌 = {𝜌𝜌}{𝒖𝒖} (A22)

𝜌𝜌𝒖𝒖 = {𝜌𝜌}{𝒖𝒖}⊗ {𝒖𝒖} + {𝑝𝑝}𝕀𝕀 + {𝜌𝜌}⟦Φ⟧𝕀𝕀 (A23)

𝜌𝜌𝜌𝜌 = {𝒖𝒖}({𝜌𝜌}{𝜌𝜌} + {𝑝𝑝}). (A24)

First we make the observation that variables such as u, e, and p are nonlinear functions diagnosed from the prog-
nostic variables ρ, ρu, and ρe,

𝒖𝒖 =
𝜌𝜌𝒖𝒖

𝜌𝜌
, 𝑒𝑒 =

𝜌𝜌𝑒𝑒

𝜌𝜌
, and 𝑝𝑝 = (𝛾𝛾 − 1)

(

𝜌𝜌𝑒𝑒 −
𝜌𝜌𝒖𝒖 ⋅ 𝜌𝜌𝒖𝒖

2𝜌𝜌
− 𝜌𝜌Φ

)

. (A25)

Thus the linearization of Equations A22–A24 will involve linearizations of u, e, and p. Furthermore, we can 
make use of the identities 𝐴𝐴 {𝑎𝑎 + 𝑏𝑏} = {𝑎𝑎} + {𝑏𝑏} since we are using simple averages for the numerical flux. For 
example, the linearization of the mass conservation flux with respect to reference states ρr and (ρu)r is calculated 
by including infinitesimal perturbations ρ and ρu, for example,

𝛿𝛿𝜌𝜌 ≡ {𝜌𝜌𝑟𝑟 + 𝜌𝜌}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟 + 𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟 + 𝜌𝜌

}

− {𝜌𝜌𝑟𝑟}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟

}

 (A26)

≈{𝜌𝜌𝑟𝑟}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟 + 𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟 + 𝜌𝜌

}

− {𝜌𝜌𝑟𝑟}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟

}

+ {𝜌𝜌}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟 + 𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟 + 𝜌𝜌

}

 (A27)

≈{𝜌𝜌𝑟𝑟}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟 + 𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟 + 𝜌𝜌
−

(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟

}

+ {𝜌𝜌}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟

}

 (A28)

≈{𝜌𝜌𝑟𝑟}

{

𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟
− 𝜌𝜌

𝒖𝒖𝑟𝑟

𝜌𝜌𝑟𝑟

}

+ {𝜌𝜌}

{

(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟

}

 (A29)

≡
𝐿𝐿

𝜌𝜌 (A30)
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where in the last line we made use of

1

𝜌𝜌𝑟𝑟 + 𝜌𝜌
≈

1

𝜌𝜌𝑟𝑟
−

𝜌𝜌

𝜌𝜌
2
𝑟𝑟

and
(𝜌𝜌𝒖𝒖)𝑟𝑟 + 𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟 + 𝜌𝜌
≈

(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟
+

𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟
− 𝜌𝜌

(𝜌𝜌𝒖𝒖)𝑟𝑟

(𝜌𝜌𝑟𝑟)
2
. (A31)

We condense Equation A29 by defining the reference velocity ur and linearized velocity uL as

𝒖𝒖𝑟𝑟 ≡
(𝜌𝜌𝒖𝒖)𝑟𝑟

𝜌𝜌𝑟𝑟
and 𝒖𝒖𝐿𝐿 ≡

𝜌𝜌𝒖𝒖

𝜌𝜌𝑟𝑟
− 𝜌𝜌

𝒖𝒖𝑟𝑟

𝜌𝜌𝑟𝑟
, (A32)

so that


𝐿𝐿

𝜌𝜌 = {𝜌𝜌𝑟𝑟}{𝒖𝒖𝐿𝐿} + {𝜌𝜌}{𝒖𝒖𝑟𝑟}. (A33)

Similarly we define linearized and reference values as

𝑒𝑒𝑟𝑟 ≡
(𝜌𝜌𝑒𝑒)𝑟𝑟

𝜌𝜌𝑟𝑟
, 𝑝𝑝𝑟𝑟 ≡ (𝛾𝛾 − 1)

(

(𝜌𝜌𝑒𝑒)𝑟𝑟 −
(𝜌𝜌𝒖𝒖)𝑟𝑟 ⋅ (𝜌𝜌𝒖𝒖)𝑟𝑟

2𝜌𝜌𝑟𝑟
− 𝜌𝜌𝑟𝑟Φ

)

, (A34)

𝑒𝑒𝐿𝐿 ≡
𝜌𝜌𝑒𝑒

𝜌𝜌𝑟𝑟
− 𝜌𝜌

𝑒𝑒𝑟𝑟

𝜌𝜌𝑟𝑟
, and 𝑝𝑝𝐿𝐿 ≡ (𝛾𝛾 − 1)

(

𝜌𝜌𝑒𝑒 −
1

2
(𝜌𝜌𝑟𝑟𝒖𝒖𝑟𝑟 ⊗ 𝒖𝒖𝐿𝐿 + 𝜌𝜌𝒖𝒖⊗ 𝒖𝒖𝑟𝑟) − 𝜌𝜌Φ

)

. (A35)

In total, the Jacobian of Equations A22–A24 with respect to a reference state ρr, (ρu)r, ρer, yields the linearized 
numerical fluxes


𝐿𝐿

𝜌𝜌 = {𝜌𝜌𝑟𝑟}{𝒖𝒖𝐿𝐿} + {𝜌𝜌}{𝒖𝒖𝑟𝑟} (A36)


𝐿𝐿

𝜌𝜌𝒖𝒖 = ({𝑝𝑝𝐿𝐿} + {𝜌𝜌}⟦Φ⟧)𝕀𝕀 + {𝜌𝜌}{𝒖𝒖𝑟𝑟}⊗ {𝒖𝒖𝑟𝑟} + {𝜌𝜌𝑟𝑟}{𝒖𝒖𝑟𝑟}⊗ {𝒖𝒖𝐿𝐿} + {𝜌𝜌𝑟𝑟}{𝒖𝒖𝐿𝐿}⊗ {𝒖𝒖𝑟𝑟} (A37)


𝐿𝐿

𝜌𝜌𝜌𝜌 = {𝒖𝒖𝐿𝐿}({𝜌𝜌𝑟𝑟}{𝜌𝜌𝑟𝑟} + {𝑝𝑝𝑟𝑟}) + {𝒖𝒖𝑟𝑟}({𝜌𝜌}{𝜌𝜌𝑟𝑟} + {𝜌𝜌𝑟𝑟}{𝜌𝜌𝐿𝐿} + {𝑝𝑝𝐿𝐿}). (A38)

We see by inspection that the above system is indeed linear with respect to ρ, ρu, and ρe.

For the interface term component of the numerical flux, we use linearized versions of the interface flux used 
in the full equations plus a reference state based Rusanov flux for the penalty term. Each column has its own 
reference state and the resulting linear systems are factored and solved directly. The reference state itself is 
constructed from instantaneous values of density, horizontal-momentum, and total-energy. Projecting out the 
vertical momentum from the reference state makes the method slightly more robust.

A3. Kinetic + Potential Energy Preservation

As mentioned in Section 2.1, our choice of numerical flux is mimetic of

𝜕𝜕𝑡𝑡

(

1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ

)

= −∇ ⋅

(

𝒖𝒖

[

1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ + 𝑝𝑝

])

+ 𝑝𝑝∇ ⋅ 𝒖𝒖. (A39)

The calculation is as follows. We start by noticing

𝜕𝜕𝑡𝑡

(

1

2
𝜌𝜌‖𝒖𝒖‖

2 + 𝜌𝜌Φ

)

= 𝒖𝒖 ⋅ 𝜕𝜕𝑡𝑡(𝜌𝜌𝒖𝒖) −

(

1

2
‖𝒖𝒖‖

2 − Φ

)

𝜕𝜕𝑡𝑡𝜌𝜌 (A40)

= − 𝒖𝒖 ⋅

[

∇ ⋅ 𝜌𝜌𝒖𝒖

]

+

(

1

2
‖𝒖𝒖‖

2 − Φ

)

∇ ⋅ 𝜌𝜌 (A41)

where the flux 𝐴𝐴 𝜌𝜌𝒖𝒖 includes the non-conservative gravity term. We now replace the above equation with the 
discrete analog, using a natural extension of the notation in Section 2,

−𝒖𝒖 ⋅

[

∇ ⋅ 𝜌𝜌𝒖𝒖

]

+

(

1

2
‖𝒖𝒖‖

2 − Φ

)

∇ ⋅ 𝜌𝜌⇒ − 𝒖𝒖𝑖𝑖 ⋅

[

∇𝑖𝑖′ ⋅ 𝜌𝜌𝒖𝒖

]

+

(

1

2
‖𝒖𝒖‖

2
𝑖𝑖
− Φ𝑖𝑖

)

∇𝑖𝑖′ ⋅ 𝜌𝜌. (A42)
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The ∇i′ operator is acting in the same capacity as the 2Dii′ operator from Section 2, but without explicitly writing 
out all the summations and different component directions. Hence, it is no longer a differential operator but a 
matrix that implicitly sums over the i′ index. Choosing the numerical flux from Equations 40–42 yields

−𝒖𝒖𝑖𝑖 ⋅

[

∇𝑖𝑖′ ⋅ 𝜌𝜌𝒖𝒖

]

+

(

1

2
‖𝒖𝒖‖

2
𝑖𝑖
− Φ𝑖𝑖

)

∇𝑖𝑖′ ⋅ 𝜌𝜌 = ∇𝑖𝑖′ ⋅

[(

1

2
‖𝒖𝒖‖

2
𝑖𝑖
− Φ𝑖𝑖

)

𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ 𝜌𝜌𝒖𝒖

]

 (A43)

=∇𝑖𝑖′ ⋅

[(

1

2
‖𝒖𝒖‖

2
𝑖𝑖
− Φ𝑖𝑖

)

{𝜌𝜌}{𝒖𝒖} − (𝒖𝒖𝑖𝑖 ⋅ {𝒖𝒖}{𝜌𝜌}{𝒖𝒖} + 𝒖𝒖𝑖𝑖{𝑝𝑝} + 𝒖𝒖𝑖𝑖{𝜌𝜌}⟦Φ⟧)

]

. (A44)

Note the following identities

𝒖𝒖𝑖𝑖 = {𝒖𝒖} − ⟦𝒖𝒖⟧ (A45)

1

2
‖𝒖𝒖‖

2
𝑖𝑖
− 𝒖𝒖𝑖𝑖 ⋅ {𝒖𝒖} =

1

2
‖𝒖𝒖‖

2
𝑖𝑖
−

1

2
𝒖𝒖𝑖𝑖 ⋅ 𝒖𝒖𝑖𝑖 −

1

2
𝒖𝒖𝑖𝑖′ ⋅ 𝒖𝒖𝑖𝑖 = −

1

2
𝒖𝒖𝑖𝑖′ ⋅ 𝒖𝒖𝑖𝑖 =

1

2
{𝒖𝒖 ⋅ 𝒖𝒖} − {𝒖𝒖} ⋅ {𝒖𝒖} (A46)

2(Φ𝑖𝑖{𝒖𝒖} + 𝒖𝒖𝑖𝑖⟦Φ⟧) = Φ𝑖𝑖[𝒖𝒖𝑖𝑖 + 𝒖𝒖𝑖𝑖′ ] + 𝒖𝒖𝑖𝑖[Φ𝑖𝑖′ − Φ𝑖𝑖] = Φ𝑖𝑖′𝒖𝒖𝑖𝑖 + Φ𝑖𝑖𝒖𝒖𝑖𝑖′ = 4{Φ}{𝒖𝒖} − 2{Φ𝒖𝒖}, (A47)

to write Equation A44 as

−∇𝑖𝑖′ ⋅

(

{𝜌𝜌}

[

{𝒖𝒖}{𝒖𝒖 ⋅ 𝒖𝒖} −
1

2
{𝒖𝒖}{𝒖𝒖} ⋅ {𝒖𝒖} + 2{Φ}{𝒖𝒖} − {Φ𝒖𝒖}

)

+ {𝒖𝒖}{𝑝𝑝}

]

+ ∇𝑖𝑖′ ⋅ (⟦𝒖𝒖⟧{𝑝𝑝}) (A48)

where the first term is the divergence of a conservative flux and the second term is the non-conservative pres-
sure work. Since the left term has been expressed as a flux, the equation is now mimetic of the continuous 
kinetic + potential energy equations,

{𝜌𝜌}{𝒖𝒖 ⋅ 𝒖𝒖} −
1

2
{𝜌𝜌}{𝒖𝒖} ⋅ {𝒖𝒖}⇒

1

2
𝜌𝜌‖𝒖𝒖‖

2
and 2{𝜌𝜌}{Φ}{𝒖𝒖} − {𝜌𝜌}{Φ𝒖𝒖}⇒𝜌𝜌𝒖𝒖Φ. (A49)

With regards to checking that one has a conservative flux, it is not necessary to express the terms as averages, 
rather, one can simply see if a resulting expression is invariant with respect to interchanging i and i′.

As our final comment, we state that kinetic energy preservation amounts to noticing that

1

2
‖𝒖𝒖‖

2
𝑖𝑖
𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ ma, (A50)

is expressible as a conservative flux, where 𝐴𝐴 ma is the advection part of the momentum flux. This is always possi-
ble, as noted by (G. J. Gassner et al., 2016a), if we choose the advection part of the momentum flux as

ma = {𝒖𝒖}⊗ 𝜌𝜌 (A51)

since

1

2
‖𝒖𝒖‖

2
𝑖𝑖
𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ ma =

1

2
‖𝒖𝒖‖

2
𝑖𝑖
𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ {𝒖𝒖}𝜌𝜌 = −𝜌𝜌

(

{𝒖𝒖 ⋅ 𝒖𝒖} −
1

2
{𝒖𝒖} ⋅ {𝒖𝒖}

)

 (A52)

as we have seen from the prior calculations. The analogous statement for the potential energy term is

−Φ𝑖𝑖𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ Φ = a conservative flux, (A53)

where 𝐴𝐴 Φ is the non-conservative flux associated with gravity. For example, a central flux for 𝐴𝐴 𝜌𝜌 ,

𝜌𝜌 = {𝜌𝜌𝒖𝒖} (A54)

implies the use of the usual gravity source term,

Φ = ({𝜌𝜌} − ⟦𝜌𝜌⟧)⟦Φ⟧𝕀𝕀 (A55)

for the non-conservative flux, so that

−Φ𝑖𝑖𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ Φ = −2{𝜌𝜌𝒖𝒖}{Φ} + {𝜌𝜌𝒖𝒖Φ}, (A56)
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is a conservative flux. And if we violate the KPEP property by choosing

𝜌𝜌 = {𝜌𝜌𝒖𝒖} andΦ = {𝜌𝜌}⟦Φ⟧𝕀𝕀 (A57)

we obtain

−Φ𝑖𝑖𝜌𝜌 − 𝒖𝒖𝑖𝑖 ⋅ Φ = −2{𝜌𝜌𝒖𝒖}{Φ} + {𝜌𝜌𝒖𝒖Φ} + 𝒖𝒖𝑖𝑖⟦𝜌𝜌⟧⟦Φ⟧ (A58)

which cannot be written as a conservative flux due to the presence of ui and implies the spurious numerical source

spurious numerical source =
1

2
(𝒖𝒖 ⋅ ∇(𝜌𝜌Φ) − [Φ𝒖𝒖 ⋅ ∇𝜌𝜌 + 𝜌𝜌𝒖𝒖 ⋅ ∇Φ]) (A59)

in the kinetic + potential energy equations.

Data Availability Statement
The software to plot all the figures is found in the GitHub repository (https://github.com/sandreza/DryAtmos-
phereFluxDifferencingVisualization) archived at Zenodo (A. Souza, 2022a). The data files are found via figshare 
at (A. Souza, 2022b) along with the software used to produce the data.
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