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ABSTRACT: We present a method to downscale idealized geophysical fluid simulations using generative models based on diffusion maps.
By analyzing the Fourier spectra of images drawn from different data distributions, we show how one can chain together two independent
conditional diffusion models for use in domain translation. The resulting transformation is a diffusion bridge between a low resolution
and a high resolution dataset and allows for new sample generation of high-resolution images given specific low resolution features. The
ability to generate new samples allows for the computation of any statistic of interest, without any additional calibration or training. Our
unsupervised setup is also designed to downscale images without access to paired training data; this flexibility allows for the combination
of multiple source and target domains without additional training. We demonstrate that the method enhances resolution and corrects
context-dependent biases in geophysical fluid simulations, including in extreme events. We anticipate that the same method can be used to
downscale the output of climate simulations, including temperature and precipitation fields, without needing to train a new model for each
application and providing a significant computational cost savings.

SIGNIFICANCE STATEMENT: The purpose of this
study is to apply recent advances in generative machine
learning technologies to obtain higher resolution geophys-
ical fluid dynamics model output at lower cost compared
with direct simulation while preserving important statisti-
cal properties of the high resolution data. This is important
because while high-resolution climate model output is re-
quired by many applications, it is also computationally
expensive to obtain.

1. Introduction

Climate simulations are powerful tools for predicting
and analyzing climate change scenarios, but they are of-
ten limited by computational resources and hence in their
spatial and temporal resolution. As a result, simulations
can both lack the high-resolution detail needed for many
applications as well as carry an inherent bias due to the
lack of representation of small-scale dynamical processes
which feed back on larger scales. For example, horizontal
resolutions of 𝑂 (10−100 km) are still too coarse to accu-
rately simulate important phenomena such as convective
precipitation, tropical cyclone dynamics, and local effects
from topography and land cover, and hence these simu-
lations can be of limited use for making predictions on
regional and sub-regional scales. In particular, the low
resolution fields suffer from biases in extreme tempera-
tures and precipitation rates, which in turn can reduce the
accuracy of projections of climate hazards on smaller spa-
tial scales, e.g., Abatzoglou and Brown (2012); Gutmann
et al. (2014); Hwang and Graham (2014).

Corresponding author: tobias@caltech.edu
Authors are listed in alphabetical order as co-first authors.
All authors contributed equally to this work.

Several approaches have been developed to address bi-
ases and increase resolution in fluid and climate simula-
tions, a process referred to as “downscaling" of fluid flows
(Fowler et al. 2007; Salathé Jr et al. 2007; Maurer and
Hidalgo 2008). Nudging techniques, which involve con-
straining the solution of a dynamical system to follow the
large-scale information, are applied during simulation-time
and are a form of dynamical downscaling. On the other
hand, statistical downscaling refers to methods which use
a data-derived model to make a correction to a fluid simu-
lation or to computed statistic after the simulation has been
run, which can keep the computational budget compara-
tively lower. This is usually achieved by amortizing the
training cost of these models over many evaluations during
post-processing, as opposed to solving the highly resolved
fluid system whenever output is needed (but not requiring
any training time).
The predominant statistical method for bias correction

and resolution enhancement of climate variables is the
bias-correction spatial disaggregation (BCSD) algorithm
(Panofsky et al. 1958; Wood et al. 2002, 2004; Thrasher
et al. 2012). BCSD uses quantile mapping to correct biases
and Fourier transforms to enhance resolution. However,
the BCSD algorithm has limitations, including its inability
to incorporate auxiliary datasets and its lack of multivari-
ate capability. Quantile mapping can also adversely affect
large-scale features such as the evolution of mean values
(Hagemann et al. 2011; Pierce et al. 2013; Maurer and
Pierce 2014; Ballard and Erinjippurath 2022). Constructed
analogs and variants thereof are a multivariate method for
downscaling which have been shown to outperform other
methods, perhaps due to the fact that they take into ac-
count correlations between variables (Pierce et al. 2014;
Abatzoglou and Brown 2012). However, these methods do
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not truly allow for sampling high resolution data from a
distribution.
At the same time, generative machine learning models

like Generative Adversarial Networks (GANs; e.g., Good-
fellow et al. (2020)), Variational Autoencoders (VAEs; e.g.
Kingma et al. (2019)), and Normalizing Flows (NFs; e.g.,
Papamakarios et al. (2021)) have been demonstrated to be
effective for super-resolution and for domain translation
(e.g., Wang et al. (2021); Zhu et al. (2017)), and are now
being applied to the downscaling task. In these use-cases,
the models are deep convolutional neural networks which
map images with multiple channels (e.g., fields of climate
model variables at low resolution) into output images with
multiple channels (e.g., fields of climate model variables at
high resolution). Statistical relationships between datasets
are learned implicitly, either in a “supervised" or “unsu-
pervised" fashion. In supervised approaches, data points
are mapped from low resolution to high resolution in an
aligned fashion: each low-resolution data point in the train-
ing set has a corresponding high-resolution data point in
the training set. Alternatively, when paired data points are
unavailable, the downscaling task becomes one of mod-
eling conditional data distributions, and then generating
samples from these distributions.
In this work, we propose to use generative models based

on diffusionmaps for generating downscaled fluid flows us-
ing unpaired training data. Diffusion models have shown
great flexibility in generating realistic samples from a va-
riety of learned high-dimensional probability distributions
(e.g., images, audio, and video, Dhariwal and Nichol
(2021); Kong et al. (2021); Ho et al. (2022a,b)). With
respect to domain translation and downscaling, i.e., trans-
forming a sample from a source distribution into a sample
from a target distribution, generative diffusionmodels have
distinct advantages over classical methods, e.g.

• generative models allow for sampling from high-
dimensional probability distributions. From these
samples any statistical quantity can be computed;

• diffusion-based models can be trained with unpaired
data, and can therefore be used for multiple domain
translation tasks without retraining for each source
domain/target domain pair (Su et al. 2023);

• pretrained diffusion-based models can be “repur-
posed“ to sample from specific parts of the domain
using guided sampling e.g., (Ho and Salimans 2022;
Dhariwal and Nichol 2021).

These points put diffusion-based models into a class dis-
tinct from classical methods and in some cases distinct
even from GAN-based methods, many of which require
paired data or paired source/target domains. This sug-
gests diffusion-based models as a promising candidate
well-suited for applications in fluid dynamics and climate
science because

• retraining machine learning models frequently is un-
desirable due to the potentially high training cost in-
volving high dimensional data points (e.g., full cli-
mate fields);

• for downscaling tasks, paired datasets of high and low
resolution climate simulations do not truly exist, due
to deterministic chaos and the feedback of small scale
motion to large scales;

• extreme events with biased tail probabilities can be
correlated across climate variables and spatial loca-
tions, and calibrating a downscaling method for all
statistics of interest is challenging. As a result the
ability to generate samples can be highly desirable.

In this work, we provide a demonstration of how diffusion
models can be used for domain translation between low
and high resolution fluid simulations, without customiza-
tion to the specific translation task under consideration.
We focus on the generation of consistent high-resolution
information given a low-resolution input and on the cor-
rection of important statistical biases, e.g., shifts in mean
values, unresolved spatial scales, and underestimated tail
events.

a). Related Work

1) Downscaling of climate data

Machine learning based methods for downscaling and
bias correction have been applied to climate simulations
successfully in prior works. Pan et al. (2021) use GANs
to bias correct climate simulation data over the continen-
tal United States and focus on matching various statisti-
cal quantities of corresponding observational data. Us-
ing paired high resolution radar measurements, ECMWF
simulation data, and other contextual information, Harris
et al. (2022) use GANs to downscale simulated low reso-
lution precipitation fields. They found that their model
outperformed many conventional approaches, including
on extreme rainfall events. Similarly, Price and Rasp
(2022) show that conditional GANs can be used to di-
rectly bias correct and downscale low resolution precip-
itation forecasts using high-resolution ground truth radar
observations. Ballard and Erinjippurath (2022) use con-
trastic translation GANs and high resolution observations
to downscale CMIP low resolution simulation data for daily
maximum temperature and precipitation. This particular
variant of GAN model allows for training in an unsuper-
vised, unpaired fashion (Park et al. 2020). Again, the au-
thors find comparable or improved performance compared
to existing methods. Similarly, Groenke et al. (2021) use
unpaired datasets to learn a domain translation map from
low resolution simulation data to high resolution, unbiased
data by combining normalizing flows with a cycle con-
sistency loss function similar to that of CycleGANs (Zhu
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et al. 2017). Methods based on CycleGANs generally re-
quire that a model is trained with access to both the source
and the target data, so that a new model must be created
for each translation task.

2) Diffusion modeling

Diffusion is a dynamical process which erases initial
conditions on long timescales. Using observed data (which
are samples from an unknown data distribution) as initial
conditions, we can integrate a trajectory forward in time
under a diffusion model chosen so that as 𝑡 →∞, the long-
time steady state of the system corresponds to samples
from a known distribution like a Gaussian (the prior dis-
tribution). Using samples from the prior distribution as
initial conditions, solving the reverse-diffusion model will
generate samples from the unconditional data distribution.
That diffusive processes can then be used as generative
models, transforming samples from a known prior distri-
bution into samples from an unknown data distribution via
a diffusive process, has been established by several authors,
e.g., Sohl-Dickstein et al. (2015); Song and Ermon (2019);
Ho et al. (2020). Indeed, more recently, Song et al. (2021b)
showed that images created by generative diffusion mod-
els can be understood to be numerical solutions to “reverse
diffusion" stochastic differential equations, with initial con-
ditions equal to samples from the prior distribution. This
relies on the fact that (forward) diffusion processes can be
reversed if the score, related to the gradient of the data dis-
tribution, is known (Anderson 1982). Moreover, while the
unconditional data distribution can be challenging to ap-
proximate directly, (Hyvärinen and Dayan 2005; Vincent
2011) have demonstrated how to approximate the score of
the distribution using neural networks and gradient descent
of a tractable loss function.
The mathematical results for unconditional distribu-

tions, described above, can be extended to conditional dis-
tributions, allowing for conditional sampling (Song et al.
2021b; Batzolis et al. 2021). Many conditional diffusion
models require paired input data points, and many im-
portant conditional generation tasks provide this type of
data (e.g, super-resolution, inpainting, colorization, and
other imputation tasks, including with temporal sequences
- Tashiro et al. (2021); Saharia et al. (2023); Giannone
et al. (2022); Ho et al. (2022a); Saharia et al. (2022)).
Alternatively, Meng et al. (2022) show how to generate
photo-realistic images from simple stroke paintings with
little detail by choosing an appropriate starting point (ini-
tial condition) and starting time for a reverse diffusion
trajectory. As we will discuss, this can be interpreted as
generating a high resolution image conditional on the input
stroke painting. Crucially, it is carried out using a model
trained only on the high resolution data, without access to
the stroke paintings. That is, it does not require paired data
to generate samples from the conditional distribution.

In constrast to CycleGANs (Zhu et al. 2017), Su et al.
(2023) show how diffusion models can be used for domain
translation such that a model is trained once per data do-
main and not once per translation of interest (StarGANS
are another solution, but at the expense of increased com-
plexity Choi et al. (2018)). This feature of diffusion mod-
els arises because diffusion models for two domains have
easily relatable prior distributions, and is advantageous
because it allows for the same model to be used in many
translation tasks. The translation works by completely dif-
fusing an image from one domain, then turning that final
state into a sample from the other domain’s prior, and car-
rying out the reverse diffusion for the other domain using
its model. The approach we will showcase in this work is
based on combination of the ideas of Meng et al. (2022)
and Su et al. (2023), where a chain of diffusion models
acts as a bridge between data domains, although the gen-
eral idea has been around for much longer (Chetrite et al.
2021).

b). Our Contribution

We present and test an unsupervised method for the
downscaling of fluid simulations. The method is based
on chaining together diffusion-based generative models.
It relies on the fact that coarsely resolved and highly re-
solved climate simulations differ on small and intermedi-
ate spatial scales, but mostly agree on the largest scales.
Because the diffusion processes we employ here erase in-
formation on the smallest scales first, we can start with
samples from a source domain (low-resolution), diffuse
them until small-scale information is lost, then reverse dif-
fuse them using a pre-trained diffusion model for the target
domain (high-resolution). How well the resulting images
match the source image on large scales while simultane-
ously containing fine scale features which match statistics
of the high resolution data is governed by the time at which
we stop the forward noising process and begin the reverse
diffusion process. Following Meng et al. (2022) and Su
et al. (2023), we will refer to such a source-to-target diffu-
sionmodel as a diffusion bridge. As described already, this
approach has advantages over existing downscaling meth-
ods as it allows for sample generation, use with unpaired
data, and the reusability of trained models, but it has not
been tested yet for this application.
Additionally, we introduce architectural improvements

for the neural network employed in the diffusion model.
These improvements are secondary to our overall goal but
improve performance metrics and decrease training time.
Score-based diffusion models are known to suffer from
a “color-shift": generated images may have the correct
spatial features, but are shifted to different average colors
relative to the training data. The error grows for larger
images. One approach for improving this artifact is to
use an exponential-moving-average (EMA) of the model
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parameters, typically using a very longmemory implied by
the exponential moving average (Song and Ermon 2020).
As a consequence, a large number of training iterations is
required to reach good performance. While alleviation of
the color-shift via other techniques is possible, e.g., Choi
et al. (2022), we reduce the effect by introducing a bypass
layer in the neural network architecture. This removes the
need for the exponential moving average even for large
image sizes (e.g., 512x512 pixels in spatial resolution).

2. Data & Simulations

We use a two-dimensional advection-condensation
model similar to the one proposed in O’Gorman and
Schneider (2006) to create the fluid simulation data used
in this work. The model is intended to provide an ap-
proximate representation of the dynamics of moisture on
isentropes in the extratropical atmosphere on Earth-like
planets (O’Gorman and Schneider 2006). As such it is an
idealized toy model. Nevertheless, the model allows for
detailed investigations of spectral and distributional prop-
erties of its vorticity and moisture fields at low computa-
tion cost compared to a full climate model. Throughout
this study, we focus on two quantities with nearly isotropic
statistics, vorticity and an advected tracer that represents
the supersaturation 𝑞′ = 𝑞−𝑞s in an Earth-like atmosphere,
where 𝑞 is the mass fraction of water relative to moist air
(specific humidity), and 𝑞𝑠 is the mass fraction when the
air is saturated (saturation specific humidity).
The vorticity evolves according to the two-dimensional

Euler equationswith random forcing and linear dissipation.
The supersaturation is advected by the flowfield implied by
the vorticity field. It is forced by a spatially homogeneous
source 𝑒 that can be interpreted as an evaporation field,
adding moisture to the flow, as well as a spatially varying
condensation which decreases moisture in situations of
supersaturation 𝑞 > 𝑞s (𝑞′ > 0). Condensation therefore
represents the tail of the supersaturation tracer distribution,
and extreme condensation events are correspondingly even
further into the tail. For more mathematical details on the
idealized advection-condensationmodel, see Appendix 5a.
In order to mimic the meridional decay of the satura-

tion specific humidity 𝑞𝑠 along isentropes in Earth’s atmo-
sphere, we assume a linearly decaying profile that is mod-
ulated by a spatially periodic perturbation. The spatially
periodic perturbation is useful because it can be used to
impose spatial inhomogeneities in supersaturation tracer
statistics at different lengths scales. Loosely speaking,
these inhomogeneities can be interpreted as a very ideal-
ized version of orographic impact on the saturation specific
humidity fields.

Fig. 1: Random snapshots from the two-dimensional fluid
dynamics models. The top row shows high resolution
snapshots, while the bottom row shows low resolution
snapshots. The left column shows the supersaturation
tracer field and the right column shows the vorticity field.
The values corresponding to the colors are irrelevant for
the methods presented in this paper, but for the super-
saturation field positive values (blue colors) correspond
to regions in which the condensation term in the simula-
tion model is active (e.g., idealized rainfall events occur).
The white regions in the supersaturation field are areas of
saturation deficits (no idealized rainfall events). For the
vorticity field red colors correspond to positive values (cy-
clonic vorticity), while blue values correspond to negative
values (anticyclonic vorticity).

The time-independent form of 𝑞𝑠 is given by the follow-
ing expression

𝑞𝑠 (𝑥, 𝑦) = 𝛾𝑦 + 𝐴 sin
(
2𝜋𝑘𝑥𝑥

𝐿

)
sin

(2𝜋𝑘𝑦𝑦
𝐿

)
, (1)

where 𝛾 denotes a background saturation specific humidity
gradient, 𝐴 is the modulation amplitude, 𝐿 is the domain
size in 𝑥 and 𝑦 direction, and 𝑘𝑥 = 𝑘𝑦 denote wavenumbers
that takes values 𝑘𝑥,𝑦 ∈ {1,2,4,8,16} that allows for dif-
ferent large-scale saturation specific humidity profiles. As
such, we can generate a dataset of supersaturation tracer
fields with different idealized orographic or supersatura-
tion tracer forcings. Our goal is to understand how well
the diffusion model can make use of contextual informa-
tion when downscaling, as high frequency variations in
topography, surface coverage, and other fields affect the
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atmospheric flow in a more realistic climate simulation.
This site-specific information is often included in gener-
ative models, including the ones described in Section 1.
Training the model with context will in principle lead to
better performance and to better generalization.
In order to generate data for training the denoising dif-

fusion model, we performed a series of simulations at
different resolutions and with different saturation specific
humidity profiles, varying only the wavenumbers 𝑘𝑥 , 𝑘𝑦
of the saturation specific humidity modulation. We gener-
ated a set of high resolution (512×512 pixels) with varying
background saturation specific humidity profile and a low
resolution dataset (64×64 pixels) with a fixed and unmod-
ulated background saturation specific humidity field, i.e.,
𝐴 = 0. The parameters used in the simulations are given
in Table A1. Snapshots of these simulations once steady-
state was reached were saved and used as training data
for the diffusion model. We trained the diffusion model
on the entire high-resolution dataset, including all context
wavenumbers. Examples from the two-dimensional fluid
dynamicsmodels are shown in Figure 1. The top row shows
high resolution snapshots, while the bottom row shows low
resolution snapshots. The left column shows the supersatu-
ration tracer field and the right columns shows the vorticity
field, respectively. Finally, we resized the low-resolution
64×64 images using nearest-neighbor weighting to a res-
olution of 512×512, and removed high frequency aliases
by applying a low pass filter. We ensured that the spec-
tral information did not change between the true 64× 64
images and our resized ones.

3. Downscaling with Diffusion Bridges

a). Diffusion Models

Our implementation of score-based generative models
follows that of Song et al. (2021b). The forward diffusion
(“noising") process involves adding independent samples
of Gaussian noise to each pixel, where the added noise has
a mean of zero and a variance that depends on time in a
prescribed fashion. Concretely, given an initial condition
x(𝑡 = 0) ∼ 𝑝data (x) drawn from the data distribution, the
noising process is defined by the stochastic differential
equation (SDE)

dx = 𝑔(𝑡)dW, (2)

where 𝑔(𝑡) is a non-negative prescribed function of time
and dW implies a Wiener process. At any time 𝑡, the
solution to this SDE is the “noised" image x(𝑡), which is
drawn from a Normal distribution

x(𝑡) ∼ N (x(0),𝜎2 (𝑡)) = 𝑝(x(𝑡) |x(0)), (3)

where 𝜎(𝑡)2 is the variance defined by

𝜎2 (𝑡) =
∫ 𝑡

0
𝑔2 (𝑡 ′) d𝑡 ′. (4)

Here, we have chosen 𝑔(𝑡) such that at 𝑡 = 1, the variance
𝜎2 (𝑡 = 1) is much larger in magnitude than the original
pixel values, and hence all memory of initial conditions is
lost, i.e.,

𝑝(x(1) |x(0)) ≈ N (0,𝜎2 (1)). (5)

In this view, diffusion is a process which embeds a source
image into a latent space, such that samples in the latent
space x(1) are drawn approximately from a known distri-
bution - which is independent of the source data.

Fig. 2: The power spectral density for the vorticity field for
both the low and high resolution datasets, along with the
power spectral density of Gaussian white noise of different
variance 𝜎(𝑡)2. As larger amplitude Gaussian noise is
added at larger diffusion times (𝑡 → 1), the noising process
will erase the information on the smallest scales first; see
also Rissanen et al. (2023).

In order to approximately sample from the data distri-
bution, we reverse this process. First, we sample from the
latent-space prior distribution to obtain x(1). This is the
initial condition for the reverse-diffusion equation, which
is solved from 𝑡 = 1 to 𝑡 = 0. The equation which reverses
Equation (2) is given by Anderson (1982) as

dx = −𝑔(𝑡)2s(x, 𝑡)d𝑡 +𝑔(𝑡)dW, (6)

where s(x, 𝑡) is the score of the data distribution,

s(x, 𝑡) ≡ ∇𝑥 log 𝑝data (x). (7)

The goal of the training process used in diffusion modeling
is to determine a parameterized representation of the score
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s\ (x, 𝑡) ≈ 𝑠(x, 𝑡) through gradient descent on an appropri-
ately chosen loss function. That is, we parameterize the
time derivative appearing in the reverse SDE and learn it
from the data. The final image x(𝑡 = 0) resulting from this
reverse simulation, with a trained model for the score, is
the new data sample.

b). Diffusion Bridges using Spectral Information

Using a diffusion bridge for domain translation entails
chaining together the forward model for a source data set,
and the reverse model for a target data set (e.g., Meng
et al. (2022); Su et al. (2023)). Our downscaling proce-
dure builds on this idea; the discussion below makes it
explicit why the approach works by making the connection
to differential noising of spatial scales.
According to Equation (3), the noised image x(𝑡) is the

sum of x(0) and Gaussian noise, and so we can write
its Fourier transform as the sum of the Fourier trans-
form of x(0) and Gaussian noise (as the Fourier transform
of Gaussian noise is (complex-valued) Gaussian noise).
As these are uncorrelated, we can approximate the power
spectral density of PSDx(𝑡) (𝑘), where 𝑘 =

√︃
𝑘2𝑥 + 𝑘2𝑦 is the

wavenumber, as

PSDx(𝑡) (𝑘) ≈ PSDx(0) (𝑘) +PSDη (𝑡) (𝑘) (8a)
[(t) ∼ N (0,𝜎2 (𝑡)). (8b)

The power spectral density of white noise is independent
of wavenumber: PSDη (𝑡) (𝑘) = 𝜎(𝑡)2/𝑁2, where 𝑁 is the
image size. For reference, the power spectral density com-
presses the 2D Fourier transform into a 1d signal which
is independent of direction. More details are provided in
Appendix C4. Snapshots of fluid flows generally exhibit a
decay in power with increasing 𝑘 . Hence, as the diffusion
time increases from 𝑡 = 0 to 𝑡 = 1, and 𝜎(𝑡) increases, the
smallest scales (largest 𝑘) are noised first, cf. Figure 2 (see
also Choi et al. (2022); Rissanen et al. (2023)).
We assume the existence of a spatial scale _★ above

which the low resolution data is unbiased; a high resolution
simulation passed through a low-pass filter would agree
with the low resolution simulation for _ > _★. The exis-
tence of_★ implies that the expected power spectral density
PSD(𝑘) of the low resolution data and the high resolution
data agree for wavenumbers 𝑘 < 𝑘★, where 𝑘★ = 2𝜋/_★.
Given the value of 𝑘★, one can therefore estimate the dif-
fusion time 𝑡★ at which signals on all spatial scales smaller
than _★ have a signal to noise ratio of . 1,

𝑡★ = 𝜎−1
(√︁

𝑁2PSD(𝑘★)
)
, (9)

since 𝜎(𝑡) is a known analytic function.
We are interested in translating an image from a source

domain xS ∈ S into an image from a target domain xT ∈ T .

More concretely, our samples fromT are 512×512 images
generated by solving a fluid simulation at high-resolution,
and our samples from S are 512× 512 images generated
by solving a fluid simulation at 64 × 64 resolution and
then upsampling and low-pass filtering. All data x lie in
R512x512; by “target" and “source" domains S and T , we
refer to the lower dimensional manifolds within R512x512
that we assume the data lie on1. The downscaling (domain
translation) algorithm defines a function mapping from
S ∈ R512x512 to T ∈ R512x512. We use a sample xS as an
initial condition and solve the forward noising model of
the source domain to time 𝑡★. We then use x(𝑡★) as an
initial condition, and solve the reverse denoising model of
the target domain to 𝑡 = 0. The resulting image x(0) is the
generated image from T . This transport map is probabilis-
tic because different evaluations yield different samples
from the target domain. That this process approximately
samples from the conditional 𝑝(xT |xS) is not proven here,
and may not be exact, but it is intuitive: the large scale
features between the two images are kept fixed during this
sampling process. The downscaling algorithm is defined
more precisely in Algorithm 1.

Algorithm 1 Downscaling Algorithm. Steps 1-3 only are
carried out once, while (4-7) are carried out for each down-
scaled image.
1: Compute the expected power spectral densities for the
source and target domains, PSDS (𝑘) and PSDT (𝑘).

2: Solve for 𝑘★ such that PSDS (𝑘★) = PSDT (𝑘★) ≡
PSD★.

3: Compute 𝑡★(PSD★), Equation (9).
4: Sample xS ∼ 𝑝data,S (x)
5: Obtain x(𝑡★) by solving Equation (2) from 𝑡 = 0 to

𝑡 = 𝑡★, using xS as an initial condition.
6: Obtain x(0) by solving Equation (6), with sT (x, 𝑡) as
the score, from 𝑡 = 𝑡★ to 𝑡 = 0, using x(𝑡★) as an initial
condition.

7: Return x(0) = xT ∼ 𝑝(xT |xS ) .

Figure 3 shows the generated images resulting from the
downscaling procedure for different values of 𝑡★. For
𝑡★ . 0.5, the diffusion bridge has preserved the large scale
features of the low resolution image, but only the finest
scale high resolution features have been filled in. Interme-
diate scales are missing. For 𝑡★ & 0.5, the forward noising
process has erased some or all of the large scale features we
wish to preserve. In the limit of 𝑡★ = 1, we have sampled
a high-resolution image from 𝑝data,T without any informa-
tion from the source image preserved. The optimal value,

1That trajectories generated by fluid simulations are constrained to
lower dimensional manifolds seems plausible given the conserved quan-
tities and partial differential equations governing the flow, and many
large dimensional datasets are observed to lie on lower dimensional
manifolds, e.g. Brown et al. (2023).
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Fig. 3: The effect of 𝑡★ on the generated downscaled images of the supersaturation tracer (top row) and vorticity
(bottom row). Too small of a value does not result in realistic looking high-resolution images, while too large of a
value leads to realistic, but randomly chosen, high-resolution images. An optimal value of 𝑡★ . 0.5 yields a realistic
downscaled version of the low resolution source image (𝑡 = 0). For the supersaturation field positive values (blue colors)
correspond to regions in which the condensation term in the simulation model is active (e.g., idealized rainfall events
occur). The white regions in the supersaturation field are areas of saturation deficits (no idealized rainfall events). For
the vorticity field red colors correspond to positive values (cyclonic vorticity), while blue values correspond to negative
values (anticyclonic vorticity).

with respect to downscaling, is near 𝑡★ = 0.5, as also shown
in Figure 2.
The core idea of finding an optimal value of 𝑡★ was also

explored in Meng et al. (2022), but without explaining the
connection to spatial scales. In that work, they used a
tradeoff between faithfulness to the “guide" image (equiv-
alent to our low resolution image) and realism with respect
to the target image, and employed Kernel Inception Scores
and L2 norms. Choosing the optimal 𝑡★ will rely on the
metrics of interest to a given problem, and many methods
may work well.
It is important to note that this process requires that the

power spectral density of the images of interest decrease
with wavenumber. Additionally, our current implementa-
tion relies on the fact that different channels of the image
have similar spectral density shapes, so that a single value
of 𝑡★ works for each channel. A more general model would
allow the different channels to have different schedules
𝜎(𝑡).

c). Contextual Information

In the case of real climate simulations and data, the trans-
port map may also depend on contextual information, such
as surface properties, topography, etc. In order to study
this, we employ a contextual field which our data generat-
ing model, an advection-condensation model, depends on
(the dependence is explained in Section 2 and Appendix
5a). The contextual information, which we denote gener-
ically as xC , is aligned with the fluid state variable fields,
denoted x. As such, we are able to sample pairs from
the distribution (x,xC) ∼ 𝑝(x,xC). For the low resolution

runs, the context is taken to be flat. At high-resolution, the
context is available at the same resolution as the fluid state
variable fields, and is spatially varying. In this work, we
treat the context as an additional channel as input into the
convolutional neural network modeling the score function.
We do not carry out any “diffusion" on these channels.
More details on this can be found in Appendix B2.
Including contextual information does not change the ex-

planation given above with respect to the diffusion bridge.
We assume the existence of a spatial scale above which
the low resolution simulation is unbiased and above which
contextual information has not affected the flow. A data
point from the source (low resolution) domain is noised
via Gaussian noise until the small-scale information is
lost while the very largest scales remain approximately
the same. Reverse diffusion is then applied to map the
noised image towards the target (high resolution) domain.
It is in the reverse diffusion process where contextual infor-
mation enters and plays a role. This means that depending
on the contextual information a different segment of the
target domain is reached. This highlights how contextual
information can be used to guide the generative process.
The process is illustrated in Figure 4, where we use the

same source image to generate downscaled images with
different contexts (we only show the supersaturation field;
vorticity is unaffected by the context in our setup). For the
𝑘𝑥 = 𝑘𝑦 = (8,16) cases (top two rows), the same value of 𝑡★
can be used because the high-resolution and low resolution
power spectral densities only agree on spatial scales larger
than the spatial scale of the contextual perturbation. On
the other hand, for the 𝑘𝑥 = 𝑘𝑦 = 2 case (bottom row), we



8

Fig. 4: Downscaling the same low resolution supersaturation tracer field, using four different contexts (by row). On
the left is the source image, at 𝑡 = 0. Progressing to the right is equivalent to progressing through the downscaling
procedure: the forward model of the source domain is used to noise the images, and at 𝑡 = 𝑡★, we switch to the reverse
model to integrate back to 𝑡 = 0. The generated high resolution samples (at 𝑡 = 0) have different periodic signals in the
fluid flow; these are due to their specific context (second to rightmost column). A randomly chosen data sample for
each context is also shown (rightmost column). All noised images have been scaled to have the same range, which is
necessary as the variance of the added noise grows with time. For the supersaturation field positive values (blue colors)
correspond to regions in which the condensation term in the simulation model is active (e.g., idealized rainfall events
occur). The white regions in the supersaturation field are areas of saturation deficits (no idealized rainfall events).

must use a larger value of 𝑡★ in order to recover the signal
from the contextual field. At the same time, this value of 𝑡★
is in the regime where low resolution information is being
lost (as shown in Figure 3). The wavenumber 𝑘𝑥 = 𝑘𝑦 = 4
case is in between. The large scale features of the source
image are present but distorted, and the modulation is less
obvious than in the randomly drawn data sample with the
same context. In Section 4, we show the power spectral
densities for the low and high resolution data sets, making
this discussion more quantitative.
With respect to Figure 4, note that (1) even if each

downscaling simulation used the same contextual fields,
the generated high resolution imageswould be different due
to the probabilistic nature of the downscaling process, and
that (2) there is a single diffusion model used to generate
the samples with different contexts. All data across all
contexts was used to train this model.

d). A Bypass for Spatial Mean Bias Reduction

As discussed in the introduction, diffusion models can
struggle to produce images with correct spatial means
(“color shifts" in RGB images) while producing realistic

spatial variations (e.g., power spectra appear reasonable).
The recommended solution to this is to employ an expo-
nential moving average (EMA) of the parameters of the
model with a long memory (Song and Ermon 2020). In
some score network architectures attention blocks are used
(e.g. Ho et al. (2020)) which may also improve the color-
shift, as self-attention allows for learning non-local features
(Wang et al. 2018). Most of these approaches incur addi-
tional computational cost during training, which are not
necessarily prohibitive, but may nevertheless be avoided.
Errors in the spatial means of images can only result

from errors in the spatial mean of the score. Though the
neural networks used in score modeling have the capabil-
ity to predict this, they do not learn to do so efficiently.
A practical solution is to split the network’s task into two
individual, and independent, tasks: predicting the spa-
tial mean of the score, and predicting the spatial variation
about the mean of the score. We realize this by predict-
ing the spatial mean of the score in a bypass layer of our
network with independent parameters. This allows us to
keep our neural network architecture simple, essentially
consisting only of a basic U-net (Ronneberger et al. 2015),
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Fig. 5: Probability density function estimates for values of the supersaturation tracer field. Columns correspond
to different high resolution data subsets, where 𝑘 indicates the saturation specific humidity modulation wavenumber.
Orange distributions show distributions of real high resolution samples, purple distributions show distributions of
generated and downscaled high resolution samples, and green distributions show distributions of real low resolution
samples. Estimates of probability densities are performed via kernel density estimation. Shaded areas are computed
from 10000 bootstrap samples at the 99 % confidence interval.

Fig. 6: Same as Figure 5 but we are now plotting all quantities for vorticity. Unlike for the supersaturation tracer
field values, vorticity field values are distributed nearly symmetrical around zero because the vorticity forcing in the
simulations also has this property, wheras this is not the case for the supersaturation tracer.

and does not require the longer training process required
by other methods during the training process. By avoiding
more complex solutions, we are able to keep the number of
trainable parameters smaller, thereby keeping our training
and sampling procedures as computationally efficient as
possible. As a result, our generated images exhibit no dis-
cernible color shifts even when we generate samples with
a simple Euler-Maruyama sampler. We plan on expand-
ing on more of the details of this architectural choice in a
separate study.

e). Downscaling Diffusion Bridges

In order to carry out our diffusion-based downscaling
method, we train a contextual diffusion model for our high
resolution dataset. Since the forward noising process is
independent of the score function, we do not need to train
a model for the low resolution dataset (we would only need
that if we wanted to generate low resolution samples as

well). In other words, the noising direction acts like a pre-
trained encoder does within an hierarchical autoencoder
setup (Luo 2022).
Details on the construction of the diffusion models, the

network architecture, the loss function, the training proce-
dures, and the sampling method are provided in Appen-
dices B1, B2, C1, C2, C3, and C4. We note here that our
network architecture does not preserve the doubly-periodic
nature of the flow fields. This is because this is a unique
feature of this data set which will not be present in most ap-
plications, for example, in downscaling patches of a larger
fluid simulation.

4. Results

In this section, we assess the quality of the samples
generated from our diffusion bridge according to several
metrics. In terms of bias correction, we focus on biases in
spatial mean values, intermediate scale biases, and biases
in more extreme tail events (e.g., tails of distributions).
We additionally quantify how well large scale information
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is retained, how well small scale information is added by
our model, and explore how the model generalizes to an
unseen contextual field.

a). Distributions of Supersaturation Tracer Vorticity Val-
ues

Figures 5 & 6 show probability density functions for the
supersaturation tracer and vorticity fields for four different
context fields. The value of 𝑘𝑥 = 𝑘𝑦 indicates the mod-
ulation wavenumber used in the context field, according
to Equation (1). The green probability density functions
show the distribution of values for the real low resolution
data, while the orange probability density functions show
the values for the real high resolution data. The purple
probability density functions show the distribution of val-
ues from the downscaled (e.g., generated) high resolution
samples using the context-dependent diffusion bridge ap-
proach.
Figures 5& 6 show that the context-dependent diffusion

bridge approach shifts the distribution of the field val-
ues computed from the low resolution dataset close to the
distribution of values computed from the high resolution
dataset. One can see in the both the mean and variance of
the distribution is adjusted by downscaling so that the gen-
erated and high resolution distributions are much closer to
each other than generated and low resolution distributions.
Even though this is the case, the left tails remain consis-
tently underestimated by an O(1) factor. We checked that
random generated high resolution images (not downscaled
low resolution images) demonstrated the same behavior
(not shown), indicating that these errors originates in the
model itself and not in the downscaling procedure.

b). Spatial Means of Supersaturation Tracer and Vorticity

Figure 7 shows the probability density function esti-
mates for the spatial mean of the supersaturation tracer
field. These demonstrate that the low resolution simula-
tions differ from the high resolution simulations even in
the spatial mean of the supersaturation tracer field. This
indicates that the diffusion bridge-based downscaling ap-
proach does more than just adding in the small spatial scale
features; it corrects biases in large-scale features as well.
Althoughwe find that the spatial mean biases get corrected,
the variance of spatial mean values is larger in the gener-
ated data samples than it is for the real high resolution data.
We hypothesize that a refinement of the mean-bypass layer
could help alleviate this discrepancy.
Figure 8 shows the probability density function estimates

for spatial means of the vorticity field. By design of the
two-dimensional fluid dynamics model, the spatial mean
of the vorticity fluctuates around the zero and is nearly
conserved. This is recovered in the generated data samples
and is the result of our choice of including a mean-bypass
layer in our neural network design, as described in Section

3d and Appendix C2. Without the mean bypass layer in
our modified U-Net architecture, we find that is is more
difficult to obtain data samples with minimal spread in
spatial mean vorticity.
Again, we checked that random generated high res-

olution images (not downscaled low resolution images)
demonstrated the same behavior (not shown), indicating
that these errors originates in the model itself and not in
the downscaling procedure.

c). Power Spectral Densities and the Role of Contextual
Information

Our fluid simulations depend on the contextual field via
the supersaturation tracer equation, and the vorticity field
is unaffected by this information. However, the role that
the context plays in the high resolution supersaturation
field is not clear from the distribution of pixel values and
spatial means (Figures 5 and 7). Here we explore the role
of contextual information via the power spectral density
of the flow. This metric also allows us to understand how
well the downscaling method fills in information on small
scales and corrects intermediate biases.
Figures 9 & 10 show how the context-dependent dif-

fusion bridge downscaling algorithm performs in spectral
space. Figure 9 shows the mean azimuthally averaged
power spectral density for the supersaturation tracer field
and Figure 10 shows the mean azimuthally averaged power
spectral density for the vorticity field. The green spectra
show the distribution of values for the real low resolution
data, while the orange spectra show the values for the real
high resolution data. The purple spectra show the dis-
tribution of values from the downscaled (i.e., generated)
high resolution samples using the context-dependent dif-
fusion bridge approach. One can see that the real low
resolution spectra decay rapidly already at relatively low
spatial wavenumbers. This is due to the increased damp-
ing of small scales in the fluid dynamical simulations. The
context-dependent diffusion bridge approach not only “fills
in” themissing part of the spectra when comparing low res-
olution and high resolution datasets, but also corrects the
intermediate scale bias stemming from the contextual infor-
mation, i.e. the modulation of the background saturation
specific humidity field in the high resolution simulations.
For all wavenumbers, there is an overall lack of power

at all scales of the generated images, compared with the
real high-resolution images, though the overall shape is
correct. This implies that the correct spatial patterns are
being learned, but that the overall contrast of the gener-
ated images is slightly muted. This was observed during
training; we speculate that a more refined neural network
architecture for the score combined with more data would
alleviate this disagreement. Again, this same behavior was
seen in random generated images and is therefore due to
the model itself, and not to the downscaling procedure.
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Fig. 7: Probability density function estimates for spatial means of the supersaturation tracer field. Columns correspond
to different high resolution data subsets, where 𝑘 indicates the saturation specific humidity modulation wavenumber.
Orange distributions show distributions of real high resolution samples, purple distributions show distributions of
generated and downscaled high resolution samples, and green distributions show distributions of real low resolution
samples. Shaded areas are computed from 10000 bootstrap samples at the 99 % confidence interval.

Fig. 8: Same as Figure 7 but we are now plotting all quantities for vorticity. Spatial mean vorticity is not conserved in
our simulation, but fluctuates around zero with small amplitude.

More importantly, the generated images at wavenumbers
𝑘𝑥,𝑦 = 4 and 𝑘𝑥,𝑦 = 2 are lacking power at the wavenum-
ber that the context imposes on the flow. This was also
observed in Figure 4, and discussed in Section 3c. It is be-
cause our algorithm requires choosing a value of 𝑡★ which
balances preserving the large scale features of the flowwith
adding in the intermediate and small scale features. For
the larger wavenumber contexts, this balance does not ex-
ist. That is, if the high resolution and low resolution fluid
flows differ on essentially all scales, our method cannot
work. Whether or not this type of translation would still
be “downscaling" is unclear. We verified that this lack of
power at the contextual wavenumbers in the generated im-
ages was not due to the model itself; the purely generative
high resolution model (using 𝑡★ = 1) does correctly add
in the contextual features in all cases; such a value of 𝑡★
would completely lose the low resolution features we are
trying to preserve in downscaling.
These figures also demonstrate the role that context plays

in the downscaling procedure, as it clearly affects the power
spectrum of the resulting images. We took an initial step of
testing our contextual diffusion model on an unseen con-
text. To assess this, we created a new context using two
wavenumbers, one of which was not used during training,
and carried out the downscaling algorithm. The gener-
ated image, context field, and power spectral density of

the supersaturation tracer are shown in Figure 11. The
model correctly imposes the modulation, though it is hard
to quantify its performance more quantitatively given that
we do not have real fluid simulations with this context.

d). Condensation Rate Distributions

In order to further assess the performance of our down-
scaling method, we compute the distribution of the con-
densation rate for low and high resolution datasets. In
order to do this, we calculate a kernel density estimate
of positive condensation rates over the data. The calcula-
tion of the condensation rate is given in Appendix 5a and
can be thought of as a rain formation rate in the idealized
model. Figure 12 shows how the downscaling algorithm
performs when evaluating the distributions of condensa-
tion rate. The green distributions show the condensation
rates for the low resolution data, while the orange distribu-
tions show the condensation rates for the real high resolu-
tion data. The purple distributions show the condensation
rates from the downscaled (e.g., generated) high resolution
samples using the context-dependent diffusion bridge ap-
proach. One can see that the tails of the high resolution
data are underestimated by the low resolution distribution
by one or two orders of magnitude, especially for very rare
events. This is because sharp peaks are smoothed out in
low resolution numerical simulations of fluid flows. The



12

Fig. 9: Azimuthally averaged spectral density function estimates of supersaturation tracer field values. Columns
correspond to different high resolution data subsets, where 𝑘 indicates the saturation specific humidity modulation
wavenumber. Orange spectra show spectra of real high resolution samples, purple spectra show spectra of generated
and downscaled high resolution samples, and green spectra show spectra of real low resolution samples. Shaded areas
are computed from 10000 bootstrap samples at the 99 % confidence interval.

Fig. 10: Same as Figure 9 but we are now plotting all quantities for vorticity field values (e.g., the enstrophy spectrum).

downscaling procedure “lifts” the tails up and alleviates
the biases in condensation rate tail events.
However, we find that the generated samples overes-

timate the occurrence of very rare events (e.g., 1/1000
events). There are many reasons why this could be the
case. In general, machine learning models may perform
poorly in the tails of distributions due to the lack of train-
ing data from this part of the data domain. However, we
speculate that apart from this general difficulty, diffusion
models can also leave a small amount of residual noise in
the generated samples that is imperceptible to the human
eye, but that manifests itself in tail statistics. This is due
to the specific choice of noising schedule of many diffu-
sion models in which the final noise added during sample
generation is not equal to zero. In order to make further
improvements to this issue, it may be necessary to find an
improved noising schedule. Due to numerical instabilities
that can appear when the final noise amplitude approaches
zero, we leave this technical challenge for future work.
We also note that errors in the tail of a distribution can
arise from errors in the means. Our generated images have
larger variance in the means compared with the real images
(Figure 7, which may also contribute to a shift in the tails.

e). Conditional Sampling Assessment

Using the notation from Section 3c, we expect that a
reasonable downscaling algorithm approximately gener-
ates samples from the conditional distribution 𝑝(xT |xS),
where T is the high resolution data domain and S is the
low resolution data domain. More concretely, we expect
the large scale spatial features to be preserved between xT
and xS . To test how well our algorithm meets this re-
quirement, we compute the distance between downscaled
images and their low resolution source images using the
pixel-wise 𝐿2-metric. We additionally compute the same
statistic for two randomly chosen low resolution images,
and compare the distribution of these distances in each case
to each other.
The resulting distribution of 𝐿2-metric values are shown

via boxplot in Figure 13. This demonstrates that the down-
scaled images are more similar to their low resolution
source images than two randomly chosen low resolution
images are to each other, indicating that broad spatial fea-
tures are preserved by the diffusion bridge algorithm. Note
that because biases exist between the high and low reso-
lution data sets, as demonstrated in Figures 7, 9, and 10,
we first carried out the following transformation before
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Fig. 11: Demonstration of the diffusion bridge algorithm
using a contextual field that was not seen during training.
A downscaled supersaturation tracer field is shown on
the left, the context used during sampling is presented
in the right panel, and the power spectral density of the
downscaled image is shown on the bottom. The dashed
lines indicate the wavenumber of the two contextual spatial
frequencies.

computing the distance metric. We low-pass filtered the
images such that only spatial frequencies with 𝑘 < 𝑘★ are
present. We then normalized the images using the mean
pixel value and standard deviation of the pixel values for
the data domain in question. If we do not account for
this, the 𝐿2-metric value between the downscaled and real
source images can be be very large, but mostly due to the
biases of the low resolution data.

5. Conclusions

We have shown that a downscaling approach using
context-dependent diffusion bridges can correct spatial
mean biases and intermediate scale biases, as well as im-
prove resolution in idealized low resolution fluid dynamics
simulations. In addition, we showed that this approach
can help to “lift the tails” of low resolution condensation
rates, leading to at least an order of magnitude correction
probabilites density values for the condensation rate tails.
This suggests that diffusion-based generative models may
be able to correct biases in extreme event rates even in
more realistic settings and even without any explicit em-
phasis in the training loss function. We also demonstrated

that the diffusion bridge method creates downscaled im-
ages which match the statistics of the azimuthally averaged
power spectrum and distributions of supersaturation tracer
and vorticity values of the original high-resolution data. By
introducing a bypass connection in the neural network used
to model the score in the reverse diffusion process within
the diffusion bridge, the method alleviates the spatial mean
bias (e.g., color shift) problem and preserves the value of
the spatial mean vorticity. This implies that conservation
laws based on global integrals may naturally be respected
by diffusion models without further explicit emphasis in
the loss function. While this may not be important for ap-
plications to realistic climate simulations, where smaller
sections of the flow are downscaled one at a time, it may
be useful in other contexts.
As pointed out in the introduction, diffusion models

can have advantages over classical and other generative
machine learning methods for downscaling. We find that
their usefulness can be summarized as follows:

• Diffusion models are flexible and reusable. The
downscaling approach developed and applied in this
work did not require any special tuning for the datasets
at hand and it did not require the low-resolution data
during training at all. Domain translation tasks be-
tween data generated with other models or taken from
observations only require training a diffusion model
for each domain, thereby reducing the computational
effort required during training.

• The loss functions used for training diffusion models
in this work where generic and essentially unmodi-
fied and as such did not have any particular emphasis
on extreme events. No quantile loss or spectral loss
function was used in the training of our models.

• Diffusion bridges are able to approximately gener-
ate samples from high-resolution conditional distri-
butions. This can be useful in applications scenarios
where complex statistical quantities need to be com-
puted or where it is not know what kind of statistical
quantities need to be computed later on after training.

While some of these advantages may not apply in every
modeling scenario, we find that overall the large flexibility
of diffusion-based models makes them an appealing choice
in generative modeling scenarios.

a). Alternatives & Future Directions

The data used in this work is comprised of a two-
dimensional forced turbulent fluid and a supersaturation
tracer. It included several features which are similar to a
more complex climate simulation (non-Gaussian statistics
of the supersaturation tracer, the influence of site-specific
orography-like features). However, an obvious next step
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Fig. 12: Probability density function estimates for instantaneous condensation rate. Columns correspond to different
high resolution data subsets, where 𝑘 indicates the saturation specific humidity modulation wavenumber. Orange
distributions show distributions of real high resolution samples, purple distributions show distributions of generated and
downscaled high resolution samples, and green distributions show distributions of real low resolution samples. Shaded
areas are computed from 10000 bootstrap samples at the 99 % confidence interval. The vertical line approximately
indicates the 90-th percentile of true high resolution condensation rates.

Fig. 13: Comparison of downscaled images, by channel
and by wavenumber, with their low resolution source im-
ages. The statistics of the pixel-wise 𝐿2-metric values
between a filtered downscaled image and its filtered source
(low resolution) image are shown in purple; the same statis-
tics between two random low resolution images are shown
in green.

is to test the approach presented in this work with a real-
istic climate data set and compare its performance more
directly to other existing downscaling methods. In addi-
tion, we also identify some possible research directions
and outstanding questions:

• Downscaling with diffusion-based generative models
could also be achieved without diffusion bridges. In-
stead one could use a projection step during sample
generation similar to what was demonstrated in Song
et al. (2022).

• Temporal coherence of samples may be achievable
with diffusion models that are used in the context of

video generation Ho et al. (2022a). It would be inter-
esting to test their performance on physical systems,
but there may be drawbacks with respect to computa-
tional cost that need to be addressed.

• Guided sampling techniques for diffusion models, as
introduced in Ho and Salimans (2022), may be useful
in order to generate samples that have additional de-
sirable characteristics, such as high values of certain
climate indices, etc.

However, there is still room to extend the scope of the
current work. We have already identified minor discrep-
ancies in the downscaled images compared with the real
high-resolution images, as discussed in Section 4, and de-
termined that these were largely due to the model itself
(rather than the downscaling procedure). A study refin-
ing network architectures and the training procedure may
improve the model and results. Additionally, using more
varied contexts in training, and truly demonstrating gen-
eralization to out-of-sample contexts, is an important next
step.
Overall, it appears that diffusion-based models are

promising candidates for future applications in the Earth
sciences.
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APPENDIX A

Data Generating Model

The data generating model used in this work consists of a
dynamical system that mimics the advection and conden-
sation of moisture along isentropes Earth’s extratropical
atmosphere. It is idealized but contains enough complex-
ity to test the performance of the machine learning algo-
rithms outlined in this work. Specifically, it exhibits some
desirable dynamical and statistical properties. For exam-
ple, the supersaturation field is highly variable in space
and the associated idealized instantaneous condensation
rate follows a distribution with approximately exponential
tails (O’Gorman and Schneider 2006). These properties
are useful when evaluating the skill of generative machine
learning models in terms of spectral and statistical accu-
racy, especially with respect to extreme events.
The motivation for and behavior of this model are de-

scribed extensively in O’Gorman and Schneider (2006)
and as a result, we only recapitulate the main ingredients
of the model here. At its heart the model consists of the
two-dimensional vorticity equation on a periodic domain
forced randomly and damped via linear drag and hyperdif-
fusion (spectral filtering is an alternative). The governing
equations of the vorticity field read

𝜕𝑡 Z + 𝜕𝑦Ψ𝜕𝑥Z − 𝜕𝑥Ψ𝜕𝑦Z = 𝑓 − 𝑎Z − ^Δ8Z (A1)
ΔΨ = Z, (A2)

where Z denotes the vorticity, Ψ is the stream function, 𝑓
is a stochastic forcing with an isotropic wavenumber spec-
trum and power contained in a narrow ring in wavenumber

space centered on 𝑘 𝑓 with bandwidth Δ𝑘 , 𝑎 denotes a fric-
tional time scale, and ^ acts as a hyperdiffusivity. The
equation for the specific humidity field 𝑞 is given by

𝜕𝑡𝑞 + 𝜕𝑦Ψ𝜕𝑥𝑞− 𝜕𝑥Ψ𝜕𝑦𝑞 = 𝑒− 𝑐− ^Δ8𝑞 (A3)

𝑐 =
1
𝜏
(𝑞− 𝑞𝑠)Θ(𝑞− 𝑞𝑠), (A4)

where Ψ is again the stream function, 𝑒 is an evapora-
tion rate, taken as fixed in space and time, and 𝑐 denotes
the instantaneous condensation rate. Here, ^ is the same
hyperdiffusivity as in Equation (A1). The condensation
rate 𝑐 is proportional to the difference between the specific
humidity 𝑞 and the saturation specific humidity 𝑞𝑠 , but
condensation is only active when 𝑞 > 𝑞𝑠 , as it would be in
Earth’s atmosphere. In our simulations, we consider the
casewhere the condensation time scale 𝜏 is small and finite.
In other words, supersaturated (𝑞 > 𝑞𝑠) regions are relaxed
back to the saturation specific humidity 𝑞𝑠 over a time scale
𝜏. The finiteness of 𝜏 mimics non-equilibrium thermody-
namic processes but is not essential for the conclusions of
this work. As described in the main text, we vary 𝑞𝑠 as
a function of space to mimic both the decay of 𝑞𝑠 along
isentropes in Earth’s atmosphere and to impose spatial in-
homogeneities at different lengths scales (Equation (1)).
For large mean saturation deficits (𝑞 < 𝑞s), condensation
events are rare, and the mean condensation rate tends to
zero. For large evaporation rates, evaporation overpowers
the ability of the turbulence to generate subsaturated fluid
parcels through advection up the mean moisture gradient
(cf. O’Gorman and Schneider (2006)).
The complete dataset consists of six subsets, one low-

resolution subset, and five high-resolution subsets with a
total of 12,000 datapoints. A summary of the parameters
used to generate the complete dataset is given in Table A1.

APPENDIX B

B1. Diffusion Models

As described in the main text, our diffusion model’s
noising process adds Gaussian noise to the image at
each timestep. We have adopted the so-called “variance-
exploding" schedule where

𝑔(𝑡) = 𝜎min

(
𝜎max
𝜎min

) 𝑡√︄
2log

(
𝜎max
𝜎min

)
(B1a)

𝜎2 (𝑡) = 𝜎2min

[(
𝜎max
𝜎min

)2𝑡
−1

]
≈ 𝜎2min

(
𝜎max
𝜎min

)2𝑡
, (B1b)

where𝜎min and𝜎max are scalar parameters determining the
shape of the variance with time. Other noising processes,
including in the coefficient space after projecting onto a set
of basis functions (Phillips et al. (2022)) and via a blurring



16

Table A1: Parameter values for data generating model. The complete dataset generated for this work consists of six
subsets, a low-resolution dataset without any saturation specific humidity modulation, and five high-resolution subsets
with varying modulation wavenumber. All simulations were run for 200,000 time steps and the first 100,000 time steps
were discarded as spin-up for the purposes of the work presented here. The subset size reported includes the spin-up.
All values are in non-dimensional form.

Shared parameters
domain size (𝐿) time step (Δ𝑡) time steps (𝑁𝑡 ) drag coefficient (𝑎) 𝑞𝑠-gradient (𝛾) evaporation rate (𝑒)
2𝜋 1e-3 100,000 1e-2 1.0 1.0
relaxation time (𝜏) forcing wavenumber (𝑘 𝑓 ) bandwidth (Δ𝑘) energy input rate (𝜖 )
1e-2 3 2 0.1

Subset parameters
name resolution (LxL) amplitude (𝐴) wavenumber (𝑘𝑥,𝑦) hyperdiffusivity (^) subset size (𝑁𝑑)
low-res 64x64 0 no modulation 1e-8 2000
high-res-1 512x512 1 1 1e-16 2000
high-res-2 512x512 1 2 1e-16 2000
high-res-4 512x512 1 4 1e-16 2000
high-res-8 512x512 1 8 1e-16 2000
high-res-16 512x512 1 16 1e-16 2000

process (Rissanen et al. (2023); Hoogeboom and Salimans

(2022)), have also been used, but do not change the core

idea of the diffusion model.

Diffusion modeling parameterizes the score function

s\ (x, 𝑡) ≈ 𝑠(x, 𝑡), and optimizes the parameters through

gradient descent on an appropriately chosen loss function.

In practice, one usually represents the score function sθ
with a neural network 𝑓\ defined by

s\ (x, 𝑡) =
𝑓\ (x, 𝑡)
𝜎(𝑡) ≈ s(x, 𝑡). (B2)

The benefit of this is that the neural network output will

always be of𝑂 (1), which can lead to an easier training task

for the neural network (as opposed to forcing it to learn the

prescribed 𝜎(𝑡) dependence as well). The downside is

that 𝜎(𝑡 = 0) should ideally be zero, and as a result this

introduces a singularity at 𝜎(𝑡 = 0). In order to avoid this,

it is standard practice (Song and Ermon 2020) to instead

set 𝜎(𝑡 = 0) = 𝜎min, as given in the approximation of the

expression for 𝜎2 (𝑡) given by Equation (B1).

The denoising score-matching loss function (Ho et al.

2020; Song et al. 2021b) is given by

L(θ) = E𝑡 ,x(0) ,x(𝑡)
[
_(𝑡)2

(
fθ (x, 𝑡)
𝜎(𝑡) −∇x log 𝑝(x(𝑡) |x(0))

)2]
(B3a)

= E𝑡 ,x(0) ,x(𝑡)

[
_(𝑡)2

(
fθ (x, 𝑡)
𝜎(𝑡) − (x(𝑡) −x(0))

𝜎2 (𝑡)

)2]
(B3b)

= E𝑡 ,x(0) ,x(𝑡)

[
_(𝑡)2
𝜎(𝑡)2

(
fθ (x, 𝑡) −ε

)2]
, (B3c)

where

E𝑡 ,x(0) ,x(𝑡) = E𝑡∼𝑈 (0,1],x(0)∼𝑝 (x(0)) ,x(𝑡)∼𝑝 (x(𝑡) |x(0)) , (B4)

and x(𝑡) = x(0) + 𝜎(𝑡)ε is a noised image at time 𝑡,
ε ∼ N(0,1) is a Gaussian random vector, and _(𝑡) is a
weighting factor taken to be equal to 𝜎(𝑡) (see Song et al.
(2021a)). From the last step in Equation (B3) one can
see that the score matching loss is equivalent to making
the neural net learn the added noise at time 𝑡. Note that
although this involves an 𝐿2 loss is between the score func-
tion and the gradient of the logarithm of the conditional
distribution, optimizing L(\) results in an approximation
to the true score of the unconditional distribution (Vincent
(2011)).
We slightly modified the above loss function to monitor

the specific loss values with respect to spatial means and
variations about the mean. As ε in Equations (B3) is
random Gaussian noise, the mean ε̄ is independent of the
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variations about the mean, ε′ = ε− ε̄. Since f\ seeks to
match ε, we anticipate that the same will be true for it once
the network is well-trained. In that case, we can rewrite
the loss as

L(θ) = E𝑡 ,x(0) ,x(𝑡)
[
_(𝑡)2
𝜎(𝑡)2

(
fθ (x, 𝑡) −ε

)2]
(B5)

≈ E𝑡 ,x(0) ,x(𝑡)
[
_(𝑡)2
𝜎(𝑡)2

(
(f ′θ (x, 𝑡) −ε′)2 + (f̄θ (x, 𝑡) − ε̄)2

)]
.

(B6)

In practice this should not affect the training procedure;
we found it usefulmainly to track errors in themeanswhich
result in color shifts.

B2. Contextual Diffusion Models

When conditioning sampling on contextual informa-
tion in climate modeling scenarios, such as topography,
bathymetry, or land surface properties, we do have paired
data points for high and low resolution images. Denoting
these contextual images as xC , we have access to samples
from the joint distributions

zS = (xS ,xC) ∼ 𝑝(zS) (B7a)
zT = (xT ,xC) ∼ 𝑝(zT), (B7b)

where, as in the main text, T and S denote the target and
source domains. Then, we can follow Song et al. (2021b)
to allow for conditional sampling. By optimizing the loss
function

L(θ) =E𝑡 ,z(0) ,z(𝑡)
[
_(𝑡)2

(
fθ (z, 𝑡)
𝜎(𝑡) −∇x log 𝑝(z(𝑡) |z(0))

)2]
,

(B8)
where

E𝑡 ,z(0) ,z(𝑡) = E𝑡∼𝑈 (0,1],z(0)∼𝑝 (z(0)) ,z(𝑡)∼𝑝 (z(𝑡) |z(0)) , (B9)

and z(𝑡) = (x(𝑡),xC (𝑡)) is the tuple containing the state of
the fluid flow or climate model x(𝑡) and the corresponding
contextual information xC (𝑡). We choose not to noise the
context variables so that

𝑝(z(𝑡) |z(0)) = 𝑝(x(𝑡) |x(0))𝛿(xC (𝑡) −xC (0)), (B10)

and hence the score functions can be related as

∇x log 𝑝(z(𝑡) |z(0)) = ∇x log 𝑝(x(𝑡) |x(0)). (B11)

The resulting score function in this contextual setup is then
a known function, just like in the case of unconditional

diffusion models. As shown in Batzolis et al. (2021), opti-
mizing this loss function is equivalent to learning a func-
tion fθ (z, 𝑡) = ∇x log 𝑝(x(𝑡) |xC), i.e., one that represents
the conditional score. In implementation, we realize this
by inputting xC as an additional channel of the diffusion
model input. More discussion of the architecture is given
in Section C1.

APPENDIX C

C1. Network Architecture

The foundation of our score network is a U-net (Ron-
neberger et al. 2015), which maps two inputs (X, a tensor
of size (𝑁,𝑁,𝐶𝑖𝑛, 𝐵), and 𝑡, a tensor of size (𝐵, )), to a
single output Y, a tensor of size (𝑁,𝑁,𝐶𝑜𝑢𝑡 , 𝐵). That is,
U-net returns

Y =U(X, 𝑡;θ), (C1)

where U denotes the U-net with parameters θ described
in more detail below.
The first input X holds a batch of images, the second

𝑡 is a batch of times; 𝐵 is the size of the batch. Any
individual channel of the input or output is an image of
size (𝑁,𝑁); there are 𝐶𝑖𝑛 input channels and 𝐶𝑜𝑢𝑡 output
channels. For our data set, our input images have two
noised channels: the fluid vorticity and supersaturation
tracer concentration. Including the contextual information,
we have 𝐶𝑖𝑛 = 3,𝐶𝑜𝑢𝑡 = 2.
In our default configuration, the U-net has five distinct

parts. The first is an initial lifting layer, which is a convo-
lution that preserves the spatial dimensionality of X, but
increases the number of channels from 𝐶𝑖𝑛 to 32. Three
downsampling (convolutional) layers follow, which reduce
the spatial dimensionality by a factor of 2, and which in-
crease the number of channels by a factor of 2. These
transformed data are passed through eight residual blocks
which preserve the dimensionality of the transformed data
(He et al. 2016). Then, three upsampling layers, comprised
of nearest neighbor upsampling, followed by convolutions,
increase the spatial dimensionality while decreasing the
number of channels, mirror the downsampling layers. Fi-
nally, a projection layer decreases the number of channels
to 𝐶𝑜𝑢𝑡 . We use 3x3 convolutional kernels, group nor-
malization (Wu and He 2018), and the swish function as a
nonlinearity (Ramachandran et al. 2017).
The time variable is first embedded using a random

Fourier projection (Tancik et al. 2020). This embedded
time is then transformed by a dense network at each up-
and down-sampling layer, after which it is the added to the
up- or down-sampled image. The sum is then group nor-
malized, and operated on by the swish function, following
Song et al. (2021b); Ho et al. (2020), before being passed
to the next layer.
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C2. Modifications to U-net: Mean Bypass Network

Wemodified the neural network architecture introduced
in Sec. C1 to include a bypass connection. The incoming
batch is split into a component that has spatial variations (in
fact, the original image after subtracting the channel-and-
batch-wise spatial means) and the spatial average of each
channel and batch member. The spatial average is then fed
through the bypass network, while the spatially varying
component is fed through the U-net. At the final layer the
output from the U-net and the bypass are added together,
after removing the spatial average of the output of the U-
net. In this way, we have a completely separate network
handling the spatial means and the spatial variations about
the mean. Along with our choice of loss function, this has
the added advantage of making the mean prediction and
spatial variation prediction entirely independent tasks.
Concretely, we compute the spatial mean, by channel

and batch member, of the input X, denoted X̄. The spatial
variation about the mean is denoted as X′ = X− X̄, and is
processed by the U-net as discussed in Sec. C1, to pro-
duce an output U(X′, 𝑡;θ). We then subtract the spatial
mean (by channel and batch member), from this output, i.e.
we produce a tensor Y′ =U(X′, 𝑡;θ) − Ū(X′, 𝑡\) that has
zero spatial mean. A separate function M(X̄, 𝑡;φ), with
trainable parameters φ operates on X̄ and 𝑡, and returns a
tensor of the same size as X̄, denoted Ȳ. In the last layer,
we combine the outputs of these individual components to
produce the final output Y as

Y=U(X′, 𝑡;θ)−Ū(X′, 𝑡;\) +M(X̄, 𝑡;φ) =Y′+Ȳ. (C2)

The network M consists of a three-layer dense feed-
forward network, consisting of two linear transformations
followed by a normalization and nonlinear activation func-
tion, and a single final linear transformation, without an
activation or normalization. The embedded time is han-
dled in the exact same way as for U; it is passed through
a linear transformation before being added to the trans-
formed input, prior to normalization and activation.
Note that because of this, our implemented solution does

not take advantage of correlations between the spatial vari-
ations about the mean and the mean. If spatial variations
of the input are useful for predicting the spatial mean of
the score, or vice versa, our prediction will not make use
of that information. Through limited testing, we found that
lettingU have access to the entire input X yielded slightly
worse performance after training for the same number of
epochs. More investigation is required in order to take into
account these correlations.

C3. Model Training

We follow the recommendations of Song et al. (2021b)
and Ho et al. (2020) in setting up the optimizer for score-
matching denoising diffusionmodels. We use anAdamop-

timizer with a learning rate of _0 = 2e-4, 𝜖 =1e-8, 𝛽1 = 0.9,
𝛽2= 0.999. We employ gradient norm clipping to a value
of 1.0. We additionally employ a linear warmup schedule
in the learning rate, from 0 to _0, over 5000 gradient up-
dates. A batchsize of 4 was used for all runs. We generally
train for 125 epochs. In our tests, we found that a type of
overfitting would occur if we ran for longer, and we used
dropout in the residual layers, with a probability of 0.5, to
help alleviate this.
With respect to preprocessing the raw images, we pro-

ceed as follows. We first split each data sample into a
constant mean image and an image of deviations from the
mean. Over these two components of the data, we carry
out an independent minmax scaling, such that the mini-
mum pixel value (over all of the preoprocessed data) is -1
and the maximum (over all of the preprocessed data) pixel
value is 1. We then add the two back together. The result-
ing data set no longer has a minimum and maximum pixel
value of exactly ±1, but because the maximum and mini-
mum values of themean are not necessarily correlated with
the images that have the maximum and minimum spatial
deviations from the mean, the distribution of pixels is still
mostly contained within the [−1,1] range (and at worst, in
the [−2,2] range).
Our main motivation for this preprocessing step is be-

cause the total vorticity is conserved, and so the distribution
of the total vorticity is a delta function. Floating point er-
ror turns this into a Gaussian with a very small variance.
Our preprocessing step then turns this into a much wider
distribution, which will be easier to learn. However we
expect that this is beneficial in general given that means
are handled by an independent neural network; this is akin
to preprocessing the input of that network as is standard
practice.

C4. Sample Generation

To generate all of the results shown here, we use the
Euler-Maruyama (EM) method with a fixed timestep for
solving the stochastic differential equations. For the SDE

d𝑥 = 𝑓 (𝑥, 𝑡)d𝑡 +𝑔(𝑥, 𝑡)d𝑊, (C3)

the update rule is as follows:

𝑥(𝑡 +Δ𝑡) = 𝑥(𝑡) + 𝑓 (𝑥, 𝑡)Δ𝑡 +𝑔(𝑥, 𝑡)[
√
Δ𝑡, (C4)

where [ ∼ N(0,1). For all simulations, we use a fixed
timestep of 0.002, which corresponds to 500 steps from
𝑡 = 𝜖 = 1e-5 to 𝑡 = 1. Image generation was not the dom-
inant computational cost for this project, so we did not
explore varying the time-stepping algorithm or timestep.
Testing alternate time-stepping schemes is an activate area
of research in the field.
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APPENDIX F

Azimuthally-averaged Power Spectral Density

For each channel in the input data, we have a two di-
mensional image of dimensions 𝑁 ×𝑁 . We compute the
discrete Fourier transform of the image,

𝐼 (𝑘𝑥 , 𝑘𝑦) =
𝑁 /2−1∑︁
𝑥=−𝑁 /2

𝑁 /2−1∑︁
𝑦=−𝑁 /2

𝐼 (𝑥, 𝑦) exp [−𝑖2𝜋/𝑁 (𝑘𝑥𝑥 + 𝑘𝑦𝑦)] .

(F1)
The power spectrum for wavenumbers (𝑘𝑥 , 𝑘𝑦) is given by

PS(𝑘𝑥 , 𝑘𝑦) =
1
𝑁4

𝐼 (𝑘𝑥 , 𝑘𝑦)𝐼∗ (𝑘𝑥 , 𝑘𝑦). (F2)

This can be converted into a power spectral density
PSD(𝑘𝑥 , 𝑘𝑦) by dividing by an area in wavenumber space
(Youngworth et al. 2005). Wemay convert to polar coordi-
nates (𝑘, 𝜙), where 𝑘 =

√︃
𝑘2𝑥 + 𝑘2𝑦 . For isotropic flows, the

expectation of |𝐼 (𝑘, 𝜙) | over different regions of the flow
is independent of 𝜙. This means carrying out an integral
of the azimuthal angle 𝜙 leads to no loss of information
(in expectation). We can write the azimuthally averaged
power spectral density as

PSD(𝑘) = 1
𝑁4

∫ 2𝜋
0

∫ 𝑘+1
𝑘

𝐼∗𝐼𝑘 ′𝑑𝑘 ′𝑑𝜙∫ 2𝜋
0

∫ 𝑘+1
𝑘

𝑘 ′𝑑𝑘 ′𝑑𝜙
(F3)

≈ 1
𝑁4

∑
𝑘𝑥

∑
𝑘𝑦
𝐼∗𝐼Θ(𝑘2 ≤ 𝑘2𝑥 + 𝑘2𝑦 < (𝑘 +1)2)∑

𝑘𝑥

∑
𝑘𝑦
Θ(𝑘2 ≤ 𝑘2𝑥 + 𝑘2𝑦 < (𝑘 +1)2)

,

(F4)

whereΘ(condition) is a function which returns 1 when the
condition is true and 0 otherwise. This is metric becomes
less informative for images of flows with preferred direc-
tions or inhomogeneities, in which case the 2D Fourier
transformed image itself may be more useful.
Our Algorithm 1 requires knowing the power spectrum

for white noise. One can show that if 𝐼 (𝑥, 𝑦) ∼ N (0,𝜎2),
that |𝐼 (𝑘𝑥 , 𝑘𝑦)2 | ∼ Exp[1/(𝜎2𝑁2)] when 𝑘𝑥 or 𝑘𝑦 are
greater than zero. This has an expected value of 𝜎2𝑁2.
Plugging this into Equation (F3), we see that the PSD(𝑘)
of Gaussian white noise is independent of wavenumber 𝑘
and has an expected value of 𝜎2/𝑁2 for 𝑘 > 02.

2When 𝑘𝑥 = 𝑘𝑦 = 0, |𝐼 (0, 0)2 | is not drawn from an exponential
distribution. Instead, |𝐼 (0, 0)2 |/(𝜎2𝑁 2) ∼ 𝜒21 , the chi-squared dis-
tribution. We subtract the means prior to computing the PSD, so
|𝐼 (0, 0)2 | ≈ 0.
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