
Generated using the official AMS LATEX template v6.1

A Physics-Constrained Neural Differential Equation for Data-Driven1

Seasonal Snowpack Forecasting2

Andrew Charbonneaua , Katherine Deck,a Tapio Schneider,a3

a California Institute of Technology4

Corresponding author: Andrew Charbonneau, acharbon@caltech.edu5

1

ABSTRACT: This paper presents a physics-constrained neural differential equation for modeling

seasonal snow depth (or density), given atmospheric conditions and the snow water equivalent,

as a function of time. When trained on data from multiple SNOTEL sites, the model can predict

daily snow depth timeseries with �9% error on average and with Nash Sutcliffe Efficiencies of

over 0.94 across a wide variety of snow climates, an improvement of more than 20% compared

with established snow models. The model also generalizes to new sites not seen during training.

Requiring the model to predict snow water equivalent as well as snow depth, as a fully standalone

model, increases the error to �15%. The structure of the model guarantees respect of certain

physical constraints and allows snow modeling at different temporal and spatial resolutions without

additional retraining of the model. It can be easily incorporated into existing snow models as an

additional prognostic equation, and holds potential for use in climate modeling as well as in water

resource management or ecological research. We anticipate that the same model design can extend

to other dynamical systems with physical constraints.

6

7

8

9

10

11

12

13

14

15

16

17

18

2

1. Rationale19

Seasonal snowpacks serve a critical role in determining Earth’s climate, regulating Earth’s20

energy balance, and buffering storage of freshwater. They hold economic as well as ecological21

significance, as seasonal snow provides a majority of the United States’ water supply and over a22

sixth of the world’s supply, and plays a large role in agricultural, flood, drought, and avalanche23

risks (De Michele et al. 2013a; Gao et al. 2021). However, snowpacks are in turn susceptible to24

the climate state, and their long-term status is dependent on how the Earth’s climate changes in the25

future. Therefore, snowpack modeling and monitoring is important to carry out on both seasonal26

and multi-decadal timescales.27

Modeling the evolution of seasonal snow for climate applications offers a challenging problem28

of scales; it is the bulk properties of the snow (albedo, snow cover fraction, snow temperature, and29

snow water content) that are critical, yet microphysical and location-specific processes dictate these30

properties and must be taken into account. The most detailed models output vertically-resolved31

snowpacks, including liquid percolation, phase changes, metamorphic effects, and other types of32

compaction; they are often calibrated and used on the site-level (e.g., De Michele et al. (2013b)).33

The simpler models used in climate simulations range in complexity from single-layer/bulk models34

to multi-layer models with parameterizations for one more bulk properties that are calibrated from35

observational data (e.g., Menard et al. (2021)). While the laws of physics ultimately govern the36

evolution of these snow properties, the computational requirements or uncertainty surrounding37

essential small-scale processes and their closures necessitate reduced parameterizations to permit38

detailed larger- or global-scale forecasts (Kapnick et al. 2018; Bair et al. 2018). Further uncertainties39

are exacerbated by data availability (Menard et al. 2021; Kouki et al. 2022).40

The snow water equivalent, SWE, is typically used as a prognostic variable in bulk snow models,41

representing total water storage in the global water cycle and mass balance equations. It is related42

to the snow depth I via the bulk snow density dsnow and the density of liquid water dwater as43

dwaterSWE = dsnowI� (1)

The density dsnow affects the thermal, mechanical, and optical properties of snow at large and small44

scales, as well as mass/energy fluxes and a snowpack’s ability to hold melted water (Kouki et al.45

3

2022; Bormann et al. 2013). The depth I influences radiative absorption/emission, in turn affecting46

springtime thaw and the snowpack energy balance. To forecast seasonal snowpacks, an explicit47

model or observational data from sensors or satellite streams are required for at least two of the48

three quantities (SWE, I, and dsnow) that respect required energy and mass conservation laws as49

well as other physical limits on their evolution. However, for a given SWE, the snow depth and bulk50

density can vary considerably over time at a single location, or between locations under similar51

forcings, due to compaction, melting/refreezing cycles, and changes in the density of falling snow.52

The representation of these processes is where many of the challenges in snow modeling arises.53

a. Current Approaches54

The majority of prevalent snow models follow a mixed approach between fully physical and55

empirical modeling, with parameterization for one or more of SWE, I, and dsnow. For instance,56

the Community Land Model (CLM5.0) empirically parameterizes new snow density and snow57

compaction rates in the update of I, which is combined with polynomial parameterizations for58

determining water fluxes in the update of SWE to approximate dsnow = „SWE�I”dwater (Lawrence59

et al. 2019). The SNOWPACK model uses an entirely empirical model for snow density (Menard60

et al. 2021; Lehning et al. 2002). By contrast, the iSnobal model takes snow depth data and a61

parameterized physics model for dsnow to achieve an estimate for SWE (Hedrick et al. 2018). Such62

contemporary models and several proposed machine learning models (e.g., Bair et al. (2018); Me-63

loche et al. (2022)) have led to satisfactory forecasting of northern hemisphere snowpacks, though64

they frequently result in total snow depth or SWE depth errors of over 15% when tested, especially65

beyond their training or calibration locations (Meloche et al. 2022; Ebner et al. 2021; Viallon-66

Galinier et al. 2020). Furthermore, it is unclear how well these models generalize to snowpacks in67

different climates, either in new locations or in a warmer world. A further drawback of empirical68

models is their statistical or black-box nature, which precludes interpretability. Additionally, they69

may not inherently respect conservation laws, impeding their capability to integrate into larger70

hydrology models (De Michele et al. 2013a; Gao et al. 2021).71

Compared to empirical parameterizations, physical and process-based models aim to represent72

the evolution of snow in a manner that should (1) generalize to any snowpack (out-of-sample73

usage), (2) easily integrate into larger hydrology models and physical conservation laws for energy74

4

and water, and (3) offer straightforward interpretation. However, unresolved small-scale processes75

create a real-world departure from idealized physics models that frequently require a large degree76

of complexity in multiple snow layers to faithfully recreate observed macroscopic properties. This77

leads to large computational overhead and makes such models unsuitable for inclusion in global78

models, despite the necessity of small-scale accuracy in accumulated global effects. The trade-79

offs between robustness, computational complexity, and resolution continue to challenge the snow80

modeling community and large-scale climate modeling.81

b. Our contribution82

The goal of this work is to investigate how observational data can be used to augment or replace83

physically motivated parameterizations for bulk snow depth (or snow density) for global climate84

simulations and seasonal forecasting. We use observational data from many locations to inform a85

model that can be applied at any location. The proposed model follows a hybrid approach between86

physically-based and empirical modeling in that it captures physical processes and is guaranteed to87

obey physical constraints, in a manner that is both computationally simple and easily incorporated88

into larger-scale hydrology models. Such an approach offers many of the benefits of both types89

of modeling while achieving similar and improved performance relative to existing models. The90

mathematical design and modularity of the model, based on learning a prognostic equation for91

snowpack height, also makes it easy to integrate within an existing hydrology model.92

In a broader context, the proposed model demonstrates a general method for enforcing (or93

learning) hard threshold constraints of arbitrary functional form on the output of an optimizable94

data-driven model without augmentation of the loss function. The study of enforcing hard con-95

straints via network structure remains a growing field of research (Jiang et al. 2019; Dong and Ni96

2021; Beucler et al. 2021). The straightforward method we employ has applications in contem-97

porary climate modeling as well as in other physics-emulating models that guarantees respect of98

conservation laws.99

5

2. Methodology100

a. Overview101

We model the snowpack height I at any given location by the ordinary differential equation102

3I

3C
= " „I�SWE� i� ’� E�)air� %snow” � (2)

where " is a neural network whose output is the rate of change in snowpack height (units of103

m s�1), SWE is the snow-water equivalent (m), i is the relative humidity (between 0 and 1), ’104

is the broadband solar radiative energy flux (W m�2), E is the wind speed (m s�1),)air is the air105

temperature (�C), and %snow is the liquid water-equivalent rate of snowfall (m s�1). Location and106

time dependencies are only indirectly encoded in the model through the choice of input variables107

(all are evaluated at the same instantaneous time and location), which allows the same model to108

be applied at different locations and with different temporal/spatial resolution, which we initially109

choose to be consistent with the frequency of the inputs. The model " is empirical, but the goal110

of training is that it will learn to represent universal physical processes that apply independent111

of time and location. The model " is generally nonlinear, but it encompasses linear models as112

well. Using a feed-forward neural network which only depends on the current state of the system113

makes this model easy to implement into existing land-surface models, since this is consistent with114

the differential equations being solved for other variables. By contrast, recurrent neural networks115

model I directly, and require retaining a history of the state.116

The predictor variables were selected using prior knowledge about their role in snowpack evo-117

lution and based on their widespread availability. All selected variables showed a correlation118

coefficient to the target variable 3I�3C equal to or above the conventional statistical significance119

threshold of � 5%, validating their inclusion in the model.120

Choosing to predict I using SWE instead of predicting dsnow or vice versa was determined by121

current capabilities to offer the most value and utility to contemporary climate modeling techniques122

(however, the model choice is simultaneously adaptable to alternative use-cases or when SWE is123

not available, see sections 2b and 3d). Globally distributed datasets of SWE observations are more124

prevalent than those of I or dsnow, which broadens this model’s applicability. Within climate models,125

SWE is already explicitly calculated and tracked using conservation laws for water. Improving126

6

I predictions given SWE is equivalent to improving the prediction of bulk density via Eq. (1).127

With improved snow densities, snowpack properties such as thermal conductivity and liquid-water128

holding capacity can be more accurately estimated.129

b. Predictive Model Structure130

The model " consists of two components. The first is a “predictive” component with trainable131

weights, used for generating a prediction of 3I�3C. The second component of the network structure132

is a set of pre-determined functions with non-trainable weights, which enforce physical constraints133

on the prediction from the first component. The predictive network structure is shown in Fig. 1.134

Fig. 1. Structure of the predictive portion of the network. All blue lines indicate a trainable linear transformation

of the input (of : variables), including a bias. Colors indicate the activation function used upon collection at the

node, as noted in the legend. The hyperparameter = determines the width of the internal mixing layer.

135

136

137

The architecture of the predictive network was chosen with the intent of remaining as simple138

as possible while maintaining performance, resulting in the choice of only two hidden layers,139

followed by a dense collapsing layer without an activation to the predicted value. As the number140

of collapsed features is the same as the number of inputs, the network could also be interpreted as141

a dense network with one hidden layer to transform the input variables in a nonlinear manner to142

system-relevant features, followed by a regression on those features. The width of this mixing layer143

is determined by the hyperparameter = multiplying the number of input features : . This structure144

7

is easily adaptable to a different choice or number of input features for additional case studies or145

alternative target predictions.146

c. Model Constraints147

The remainder of the network exists to impose explicit and hard constraints on the overall148

prediction. Specifically, any threshold constraints can be explicitly enforced in an absolute manner149

with a max/min function fixed to the output of the network. This is immediately realizable with150

the anonymous function capabilities of most contemporary automatic differentiation and network151

packages, but can still be realized for legacy systems or specialized constructions through direct152

fixing of additional dense layers containing ReLu activation on top of any predictive model, where153

ReLu is the Rectified Linear Unit (for a breakdown of the process, see Appendix a). Our model154

constraints will be presented through such dense layers for maximal convenience of implementation155

under any system.156

1) Threshold Constraints for Snowpack Prediction157

Constraints for snowpack height evolution 3I�3C should keep the snowpack depth rate of change158

within physical limits, with the goal of creating better generalizability as well as more stable159

behavior when the entire trained model " is integrated over time. The constraints implemented160

for this specific application are as follows:161

• Enforce non-negativity of snowpack height within a time step of length �C, " � �I��C,162

• Enforce the inability of I to increase without snowfall, %snow = 0 =) " � 0. In principle,163

processes like wind drift can violate this constraint, but these affects are assumed to be minimal164

given the training data, see section 2d.165

These constraints can both be represented as upper and lower threshold functions, the lower as170

5� = �I��C and the upper as 5‚ = ReLu„?” � 1%snow¡0, where ? is the output of the predictive171

portion of the network and ReLu is the Rectified Linear Unit. In this case, I, %snow, �C are all172

nonnegative, meaning 5� is nonpositive and 5‚ is nonnegative, with 5‚ � 5� (the equivalence case173

when I = 0 and %snow = 0). These properties simplify the computational requirements to enforce174

the constraints when enacted as a sequence of ReLu layers (see Appendix a), resulting in a final175

structure for " as depicted in Fig. 2. Though the chosen constraint for this setup includes the176

8

Fig. 2. Architecture of " , highlighting the constraint component attached to the predictive structure from Fig

1. The chosen structure enforces growth only under precipitation and non-negativity of snowpack height, and is

equivalent to a max/min block on the output. Weight colors indicate the constant’s sign and activation functions

follow the color scheme given in Fig. 1.

166

167

168

169

time step �C, this does not explicitly impact the time dependency nor the resolution of the model.177

The predictive portion of the network contains no time nor time-step dependence, and its structure178

does not change after training. Choosing or changing �C appropriately scales the constraint, which179

permits its use in adaptive time-step schemes. This does not impact what values the predictive180

portion will output, only the physics-dictated minimum value that will be produced. In this manner181

the model is standalone, requiring only one round of training at one resolution to be used at any182

resolutions. It does not require additional control flow during use to maintain snowpack positivity183

when the scaling constant is adequately set—this reflects an inherent time-step independence that184

should not lead to significant time-step dependent effects when trained properly. The model is still185

limited by the temporal resolution of any input data. The only precaution is to train the model with186

data where the spread of calculated lower boundary values in the training data is mostly less than187

the expected spread of anticipated target values 3I�3C during post-training usage. Alternatively,188

choosing a constraint form without �C for employment under a different use-case also results in189

timestep independence.190

2) Benefits of Structurally-Enforced Thresholding191

The capability of a simple thresholding function affixed to a predictive model is sufficiently192

modular to enable many different types of constraint construction(s) 5 on a predictive model ? (or193

9

even learned constraints, see Appendix a) with minimal overhead cost and no loss of runtime or194

resource complexity. It is impossible for a model with such thresholding to generate an output that195

lies beyond the threshold(s) dictated by 5 . In the two-sided threshold case, an upper threshold 5‚196

and a lower threshold 5�, the model " can then be interpreted as a function which interpolates197

between two prescribed boundaries (e.g., a black-box model to predict drag between turbulent198

and viscous limits), or that describes departures from a prescribed boundary in the one-sided199

case. This facilitates integration into larger models obeying constraints from physical laws or200

control flow (even when determined from non-predictive inputs) without breaking conservation201

laws. The versatility of this approach provides utility for any predictive system where complex202

processes cannot be analytically modeled in a comprehensive manner but hard limiting cases or203

envelopes are theoretically provable. Hard boundaries also increase stability under an accumulated204

time-stepping setting since outputs remain realistic, and the enforcement of these boundaries205

during training enables gradients and subsequent weight updates to better predict values within206

the boundaries, especially when augmented with soft constraints from data filtering and/or penalty207

functions.208

d. Data209

For training, we used data from 37 sites in the United States Snow Telemetry (SNOTEL) network.210

We selected the sites based upon simultaneous availability of I, SWE, i, ’, E,)air, and precipitation211

data between hourly and daily time series of their entire reporting histories. We used averaged212

hourly data to fill missing values in reported daily time series and excised all sensor days without213

daily or hourly data. Among individual time series, entire sensor calendar years were discarded214

if a sensor showed sustained behavior of defective/unphysical measurements during that year215

(which were otherwise individually excised) to avoid the assumptions and selection biases of more216

sophisticated outlier methods, as the volume of available data at daily resolution was sufficient217

for such choices. The incremental changes in height �I, water content �SWE, and time between218

resulting measurements �C were evaluated. All data points with �C ¡ 1 day were excised, so that219

the predicted quantity, or target, is 3I�3C � �I��C for a given sensor day reporting start-of-day220

I, SWE, day-averaged i, ’, E,)air, and total daily precipitation. This resulted in 103854 usable221

10

data points, spanning a wide variety of climates (Fig 3), which will improve the model’s ability to222

generalize to different climates.223

Fig. 3. Distribution of SNOTEL sites used for training the network. (a) Training sites as visualized over the

United States. (b) Training sites visualized with elevation vs their average nonzero snowpack height, Ī‚.

224

225

The precision of measurements of snow depth in the data is 1 inch, and it is 0.1 inches for226

SWE, creating a discretization of the target feature to 1 inch/day. High or integer discretization of227

the target space hampers the ability of a regression network to learn the underlying relationships228

between predictors and target. Therefore, we averaged the resulting data over a moving consecutive229

#-day window, preserving start-of-window I and SWE, accumulating precipitation, and averaging230

the remaining features and target to create a denser spread in the feature space, as well as converting231

units to metric where applicable. This averaging also served to smooth remaining noise and sensor232

defects in the data. However, such averaging also tends to lessen extremes, which are important in233

timeseries prediction (see section 2e). Because of this, we left # as a hyperparameter to explore234

the outcomes of these competing effects. We kept an unaveraged copy of the data, including data235

with �C ¡ 1 day, for model performance evaluation.236

To soft-constrain the network toward more physical behavior and remove data where averaging237

created unrealistic values, intentional “physical” filtering was carried out on the resulting data238

after averaging over # days, including removing data where I was nonzero but SWE = 0 (an239

unphysical input), where 3I�3C ¡ 0 but precipitation was zero (snowpack cannot spontaneously240

increase without precipitation save for local increases by wind drift, but the range of wind speeds241

11

in the training data was predominantly under threshold speeds for snow transport found by Li and242

Pomeroy (1997); implying negligible influence), where 3SWE�3C was greater than precipitation243

(an unphysical result as snow density must be less than or equal to water density, and the only244

influx of water into the system is precipitation since sites were not subject to river runoff), and245

where I � SWE (snowpack cannot consist of supercondensed water). Data was then excised where246

SWE, I, and accumulated daily precipitation were all less than some small threshold n = 0�5 cm,247

as we wished to focus on learning snow pack evolution when snow was present, and excess zeros248

in the target space could drive the network to predict 3I�3C = 0 more frequently to lower average249

error, precluding learning of more interesting behavior. Similarly, we removed data simultaneously250

satisfying)air ¡ 9�C and accumulated 3I�3C was less than 2n , removing portions of the time series251

corresponding to summer. This heuristic for removing summer zeros was preferable to temporal252

filters for summer months, as the onset and disappearance of snowpacks was different for every253

training site and every year.254

The final step was to estimate the rate %snow from SNOTEL total precipitation amount (water255

equivalent of water and snow combined) using)air and i, an empirical model shown to faithfully256

derive the water-snow phase split with over 88% accuracy (Jennings et al. 2018). The model257

follows258

5snow =
1

1‚ 4U‚V)air‚Wi
� (3)

with U = �10�04, V = 1�41 �C�1, and W = 9 (with the relative humidity i 2 »0�1…). The precipitation259

rate %snow was then set to this fraction of the total precipitation divided by # days, and converted260

from in day�1 to m s�1. %rain, the remaining fraction of precipitation, was discarded and not used261

as an input feature. For application of " , %snow could be measured at a site, provided by renalysis262

data, or provided by the atmospheric model in a coupled simulation.263

Features were then scaled by their standard deviations to keep all features in a similar range,264

and the target was scaled by its absolute maximum. These scaling constants were fixed into " , to265

prevent the need for user manipulation of data prior to use.266

e. Training and Testing267

While achieving a small absolute error is important in predictive modeling, when accumulating268

predicted 3I�3C to evolve a snowpack over time, correctly predicting extreme values holds increased269

12

importance relative to that in other regression-learning applications due to error accumulation. For270

example, the integrated I„C” time series may not reflect a quickly growing or depleting snowpack,271

causing modeled snowpacks to lag behind observations early in the winter season, or persist into272

the summer months and subsequently skew albedo and runoff predictions. This problem has273

persisted in existing physical snowpack models based on Noah, Crocus, and SNOWPACK (Gao274

et al. 2021; Luijting et al. 2018; Lundy et al. 2001; Wever et al. 2015; Vionnet et al. 2019). Standard275

regression training will often under-predict extreme values without strong target correlation or high276

frequencies of extreme data, both of which rarely exist in the training data. To counter these effects277

and promote improved predictions, extremes were emphasized by creating the custom loss function278

! =
1
#3

#3Õ
8=1
F8 jH8 � Ĥ8 j=1 � (4)

where F8 is a weighting factor,279

F8 = 1‚ jH8 j=2 � (5)

and #3 is the number of training examples used in the batch, Ĥ8 is the model prediction, H8 is280

the target, and =1� =2 are constant positive integers. Optimizing a loss with „=1 = 1� =2 = 0” and281

„=1 = 2� =2 = 0” is equivalent to optimizing the average !1 and !2 losses, respectively. Positive =2282

will additionally penalize the model for poor extreme prediction without changing the convexity283

of the loss function since the targets are constants.284

Training and hyperparameter selection of the model were carried out on a leave-one-out basis,285

with the averaged and filtered training data for all but one of the 37 SNOTEL sites being used286

as training input. The unaveraged and unfiltered (# = 1 and including gaps with �C ¡ 1 day, see287

section 2e.3) left-out site data was then used for scoring for hyperparameter selection. For testing288

the model with the optimal hyperparameter configuration, forcing data was also gathered from289

SNOTEL sites in Alaska, as well as additional datasets from Kühtai, Austria (Krajči et al. 2017),290

and Col de Porte, France (Lejeune et al. 2019). These data test the model’s ability to apply in291

climates outside the training set of the 37 SNOTEL sites.292

Model implementation was carried out in the Julia language under the Flux framework (Innes293

et al. 2018; Innes 2018) and the RMSProp optimizer (Hinton et al. 2014). Training the network for294

100 epochs on all training data takes less than 30 seconds on a single Intel i9 CPU with no GPU295

13

usage, and the model storage takes up less than 4 kilobytes. Direct model evaluation scales linearly296

with input size in both time and memory when tested between 10 and 100000 inputs, requiring on297

average 1 kilobyte and 0.5 microseconds per evaluation. Linear scaling in memory and time also298

holds for timeseries generation.This scaling from model structure choice enables lower overhead299

than other more complex state-storage models like recurrent networks.300

1) Evaluation metrics301

Model performance was assessed both in terms of its ability to recreate targets from inputs302

directly (pure regression to quantify ability to learn trends in training data) as well as its ability to303

use its own outputs recursively in the creation of a timeseries for the entire observational period,304

including summers (quantifying ability under intended usage). Unlike regression predictions,305

which use observed snow depth inputs to predict the change in I across a range of conditions to306

compare to observed data, the timeseries prediction utilizes the network as a neural ODE, in a307

self-driving manner using site data as climate forcings, where the snowpack height follows with308

forward Euler steps as309

Î8‚1 = Î8 ‚�C" „ Î8�SWE8� i8� ’8� E8�)8� %8”� (6)

The resulting timeseries is evaluated against the observed timeseries. There are recent continuous310

adaptations of this form of discrete neural ODE (Chen et al. 2018), though such adaptations are311

unnecessary for this case study because the forcing data are available discretely. Evaluation metrics312

included mean absolute error (MAE) and root mean square error (RMSE) losses in addition to313

bias and residual variance, the direct regression slope between observed and predicted outputs314

(e.g., < for Ĥ = <H), and the median percent error of the generated values (for timeseries, this315

represents the median percent error of all generated I values, for pure regression, this is the median316

percent error of all generated 3I�3C values). For generated timeseries, the Nash-Sutcliffe efficiency317

(NSE, from Nash and Sutcliffe (1970)) was also calculated as well as an average snowpack percent318

error MAE�Ī‚, where Ī‚ is the average nonzero snowpack height. Faithful reproduction of the319

observed time series on out-of-sample data thus indicates valid learning of physical processes in320

the differential equation as well as an ability to generalize to additional climates.321

We also compared the model performance against a standard linear regression model of snowpack322

evolution estimated from the same training data (including I as a predictor, but without the inclusion323

14

of SWE as a predictor, due to its high correlation with I (Hawkins 1973)). Unlike the neural model324

where physical thresholds are enforced by the model and beneficially impact the training of the325

model weights, the linear model is estimated via least-squares, so thresholds for the linear model326

to enforce snowpack positivity are only enforced during the timeseries generation process in the327

same manner as they would be in the control flow of a larger hydrology model.328

2) Snow density329

Given I and SWE, the snow density is known, via Eq. 1. This permits computation of a330

predicted snow density from the input SWE and generated I timeseries, and we compared this with331

the similarly computed observed values. Timeseries values were only compared when observed I332

values were nonzero. The observed data was discrete while the model output was continuous, so333

predicting a near-zero I during nonzero observed I and SWE would result in severely unphysical334

densities which would skew the comparison metrics and obscure interpretation of the model335

performance during normal snowpack conditions on average. To counter this fact, any predicted336

nonzero I lower than the minimum observed nonzero I value was treated as zero, and the resulting337

predicted density set to that of water. Counts and therefore frequencies of days where observed338

I was zero and predicted I was nonzero (false nonzeros), as well as days where observed I was339

zero and predicted I was nonzero (false zeros) and remaining days with unphysical densities were340

also recorded. This allows investigation of errors in density only during the valid snow season341

when density would be utilized in larger hydrology processes. The inverse relationship between342

I and density will underscore failures of the model in the beginning and end of the snow season343

as well as the failure counts, since predicting minimum I during an established snowpack will344

result in larger calculated density values, and therefore density errors. Such inflation due to the345

inverse relationship will also serve to skew the NSE metric as large departures from observed346

values accumulate in quadrature.347

3) Handling gaps in data348

Particular days in the unaveraged and unfiltered (# = 1) validation data were missing one or349

more input features, creating holes of varying size (�C ¡ 1 day) in the timeseries that prevented350

continuous generation by the neural model via Eq. 6. To handle these gaps and permit generation351

of longer continuous timeseries for benchmarking against data, holes of size �C for any integer352

15

 � max were traversed via353

Î8‚ = Î8 ‚ „ �C”" „ Î8�SWE8� i8� ’8� E8�)8� %8”� (7)

and, for ¡ max, the timeseries was “reset” via Î8‚ = I8‚ , with ensuing calculations again354

handled by Eq. 6. Traversals resulting in negative snowpack due to the multiplication of the355

threshold-limited " by were instead set to zero and allowed to continue. In this manner,356

the model can also be tested against its ability to surpass holes in the data in use-cases where357

data streams are not complete, and reduce the number of “resets” during comparison that would358

otherwise serve to advantageously skew performance metrics. However, keeping a maximum359

traversal max and maintaining snowpack positivity also prevents the accumulation of errors that360

are not due to the model and thereby permit a fair evaluation of performance. The number of361

resets on a given timeseries generation was tracked. Only 1186 gaps existed in the 103854 days362

of sensor data, with � 10% greater than 7 days and less than 5% greater than 30 days. Choosing363

 max = 30 resulted in 14 sites having 0 resets, an absolute maximum of 8 resets on a timeseries of364

length 5116 days, and a maximum percentage of resets for 1 reset on a timeseries of length 173365

days. This choice was kept for the remainder of the investigation, as preliminary testing showed366

smaller choices of max to lead to variations of pack percentage scores by less than 1% on average367

and RMSE by less than 1 cm on average.368

3. Results369

a. Hyperparameter Selection370

The number of averaged days # , the network structural constant =, and the loss function param-371

eters =1 and =2 were evaluated as hyperparameters. All networks were trained over 200 epochs372

and a batch size of 64. Testing over # 2 f1�2�3�4g, = 2 f1�2�3�4�5�6�7�8g, =1 2 f1�2g, and373

=2 2 f0�1�2�4g with 37-fold leave-one-out cross-validation resulted in 9472 total networks trained.374

The loss function of each network configuration on the validation set was tracked every 10 epochs,375

and the best performing weight set as well as the indicative epoch was kept for evaluation and com-376

parison to inform hyperparameter selection. As the loss function varied between hyperparameter377

configurations, the NSE for generated timeseries and RMSE on the validation set, both in terms378

16

of regression on 3I�3C and on the generated timeseries, were the primary metrics used in judging379

model fitness.380

We found that performance on the validation set regarding regression on 3I�3C was similar381

in magnitude to that of the training set, indicating good model generalizability. Regression382

performance on the validation set of 3I�3C values decreased with increasing # (smoothing out383

training data and lessening extremes compared to validation values) and increased with increasing384

= (making the model more complex) until plateauing or overfitting decreased performance around385

= = 6. Performance did not follow any discernible trends in =1 but decreased for intermediary =2386

values with regards to direct evaluation.387

However, good performance on the regression task is not sufficient to guarantee performance in388

the generation of timeseries, as small errors from poor predictions of extremes or overfitting can389

accumulate over time. Table 1 and Fig. 4 show the averaged model scores over particular „=1� =2”390

and „#�=” configurations. The variation between most configurations is on the order of a few391

percent, and the variations are suppressed by averaging over all subconfigurations; however, the392

timeseries error is smallest at a value of =2 = 1, weakly validating the emphasis of extreme points393

in the loss function. Increasing = (which controls the size of the network) beyond intermediary394

values for any # does not yield any change in performance.395

Table 1. Performance metrics of the generated timeseries for a particular „=1, =2” configuration. Notice that

(1, 0) is the standard average !1 norm and (2, 0) is the standard average !2 norm. These are averaged over the

choices of #�= and over the 37-fold cross-validation, which serve to lessen the variation across the variables.

The median percent error is exaggerated relative to pack percent error due to overprediction whenl I is small.

396

397

398

399

(=1� =2) MAE „<” RMSE „<” NSE Median Series Err. (%) Median Regression Err.(%) Pack Err. (%)

(1, 0) 0.0619 0.105 0.926 16.7 59.0 8.45

(1, 1) 0.0608 0.103 0.930 16.3 58.3 8.30

(1, 2) 0.0614 0.104 0.929 16.6 58.9 8.39

(1, 4) 0.0619 0.105 0.927 16.7 59.1 8.43

(2, 0) 0.0643 0.108 0.924 17.2 57.1 8.78

(2, 1) 0.0624 0.105 0.929 16.7 56.8 8.52

(2, 2) 0.0634 0.107 0.927 17.0 57.3 8.64

(2, 4) 0.0639 0.107 0.924 17.2 57.3 8.72

17

