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ABSTRACT: This paper presents a physics-constrained neural differential equation for modeling

seasonal snow depth (or density), given atmospheric conditions and the snow water equivalent,

as a function of time. When trained on data from multiple SNOTEL sites, the model can predict

daily snow depth timeseries with ∼9% error on average and with Nash Sutcliffe Efficiencies of

over 0.94 across a wide variety of snow climates, an improvement of more than 20% compared

with established snow models. The model also generalizes to new sites not seen during training.

Requiring the model to predict snow water equivalent as well as snow depth, as a fully standalone

model, increases the error to ∼15%. The structure of the model guarantees respect of certain

physical constraints and allows snow modeling at different temporal and spatial resolutions without

additional retraining of the model. It can be easily incorporated into existing snow models as an

additional prognostic equation, and holds potential for use in climate modeling as well as in water

resource management or ecological research. We anticipate that the same model design can extend

to other dynamical systems with physical constraints.
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1. Rationale19

Seasonal snowpacks serve a critical role in determining Earth’s climate, regulating Earth’s20

energy balance, and buffering storage of freshwater. They hold economic as well as ecological21

significance, as seasonal snow provides a majority of the United States’ water supply and over a22

sixth of the world’s supply, and plays a large role in agricultural, flood, drought, and avalanche23

risks (De Michele et al. 2013a; Gao et al. 2021). However, snowpacks are in turn susceptible to24

the climate state, and their long-term status is dependent on how the Earth’s climate changes in the25

future. Therefore, snowpack modeling and monitoring is important to carry out on both seasonal26

and multi-decadal timescales.27

Modeling the evolution of seasonal snow for climate applications offers a challenging problem28

of scales; it is the bulk properties of the snow (albedo, snow cover fraction, snow temperature, and29

snow water content) that are critical, yet microphysical and location-specific processes dictate these30

properties and must be taken into account. The most detailed models output vertically-resolved31

snowpacks, including liquid percolation, phase changes, metamorphic effects, and other types of32

compaction; they are often calibrated and used on the site-level (e.g., De Michele et al. (2013b)).33

The simpler models used in climate simulations range in complexity from single-layer/bulk models34

to multi-layer models with parameterizations for one more bulk properties that are calibrated from35

observational data (e.g., Menard et al. (2021)). While the laws of physics ultimately govern the36

evolution of these snow properties, the computational requirements or uncertainty surrounding37

essential small-scale processes and their closures necessitate reduced parameterizations to permit38

detailed larger- or global-scale forecasts (Kapnick et al. 2018; Bair et al. 2018). Further uncertainties39

are exacerbated by data availability (Menard et al. 2021; Kouki et al. 2022).40

The snow water equivalent, SWE, is typically used as a prognostic variable in bulk snow models,41

representing total water storage in the global water cycle and mass balance equations. It is related42

to the snow depth 𝑧 via the bulk snow density 𝜌snow and the density of liquid water 𝜌water as43

𝜌waterSWE = 𝜌snow𝑧. (1)

The density 𝜌snow affects the thermal, mechanical, and optical properties of snow at large and small44

scales, as well as mass/energy fluxes and a snowpack’s ability to hold melted water (Kouki et al.45
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2022; Bormann et al. 2013). The depth 𝑧 influences radiative absorption/emission, in turn affecting46

springtime thaw and the snowpack energy balance. To forecast seasonal snowpacks, an explicit47

model or observational data from sensors or satellite streams are required for at least two of the48

three quantities (SWE, 𝑧, and 𝜌snow) that respect required energy and mass conservation laws as49

well as other physical limits on their evolution. However, for a given SWE, the snow depth and bulk50

density can vary considerably over time at a single location, or between locations under similar51

forcings, due to compaction, melting/refreezing cycles, and changes in the density of falling snow.52

The representation of these processes is where many of the challenges in snow modeling arises.53

a. Current Approaches54

The majority of prevalent snow models follow a mixed approach between fully physical and55

empirical modeling, with parameterization for one or more of SWE, 𝑧, and 𝜌snow. For instance,56

the Community Land Model (CLM5.0) empirically parameterizes new snow density and snow57

compaction rates in the update of 𝑧, which is combined with polynomial parameterizations for58

determining water fluxes in the update of SWE to approximate 𝜌snow = (SWE/𝑧)𝜌water (Lawrence59

et al. 2019). The SNOWPACK model uses an entirely empirical model for snow density (Menard60

et al. 2021; Lehning et al. 2002). By contrast, the iSnobal model takes snow depth data and a61

parameterized physics model for 𝜌snow to achieve an estimate for SWE (Hedrick et al. 2018). Such62

contemporary models and several proposed machine learning models (e.g., Bair et al. (2018); Me-63

loche et al. (2022)) have led to satisfactory forecasting of northern hemisphere snowpacks, though64

they frequently result in total snow depth or SWE depth errors of over 15% when tested, especially65

beyond their training or calibration locations (Meloche et al. 2022; Ebner et al. 2021; Viallon-66

Galinier et al. 2020). Furthermore, it is unclear how well these models generalize to snowpacks in67

different climates, either in new locations or in a warmer world. A further drawback of empirical68

models is their statistical or black-box nature, which precludes interpretability. Additionally, they69

may not inherently respect conservation laws, impeding their capability to integrate into larger70

hydrology models (De Michele et al. 2013a; Gao et al. 2021).71

Compared to empirical parameterizations, physical and process-based models aim to represent72

the evolution of snow in a manner that should (1) generalize to any snowpack (out-of-sample73

usage), (2) easily integrate into larger hydrology models and physical conservation laws for energy74
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and water, and (3) offer straightforward interpretation. However, unresolved small-scale processes75

create a real-world departure from idealized physics models that frequently require a large degree76

of complexity in multiple snow layers to faithfully recreate observed macroscopic properties. This77

leads to large computational overhead and makes such models unsuitable for inclusion in global78

models, despite the necessity of small-scale accuracy in accumulated global effects. The trade-79

offs between robustness, computational complexity, and resolution continue to challenge the snow80

modeling community and large-scale climate modeling.81

b. Our contribution82

The goal of this work is to investigate how observational data can be used to augment or replace83

physically motivated parameterizations for bulk snow depth (or snow density) for global climate84

simulations and seasonal forecasting. We use observational data from many locations to inform a85

model that can be applied at any location. The proposed model follows a hybrid approach between86

physically-based and empirical modeling in that it captures physical processes and is guaranteed to87

obey physical constraints, in a manner that is both computationally simple and easily incorporated88

into larger-scale hydrology models. Such an approach offers many of the benefits of both types89

of modeling while achieving similar and improved performance relative to existing models. The90

mathematical design and modularity of the model, based on learning a prognostic equation for91

snowpack height, also makes it easy to integrate within an existing hydrology model.92

In a broader context, the proposed model demonstrates a general method for enforcing (or93

learning) hard threshold constraints of arbitrary functional form on the output of an optimizable94

data-driven model without augmentation of the loss function. The study of enforcing hard con-95

straints via network structure remains a growing field of research (Jiang et al. 2019; Dong and Ni96

2021; Beucler et al. 2021). The straightforward method we employ has applications in contem-97

porary climate modeling as well as in other physics-emulating models that guarantees respect of98

conservation laws.99
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2. Methodology100

a. Overview101

We model the snowpack height 𝑧 at any given location by the ordinary differential equation102

𝑑𝑧

𝑑𝑡
= 𝑀 (𝑧,SWE, 𝜑, 𝑅, 𝑣,𝑇air, 𝑃snow) , (2)

where 𝑀 is a neural network whose output is the rate of change in snowpack height (units of103

m s−1), SWE is the snow-water equivalent (m), 𝜑 is the relative humidity (between 0 and 1), 𝑅104

is the broadband solar radiative energy flux (W m−2), 𝑣 is the wind speed (m s−1), 𝑇air is the air105

temperature (◦C), and 𝑃snow is the liquid water-equivalent rate of snowfall (m s−1). Location and106

time dependencies are only indirectly encoded in the model through the choice of input variables107

(all are evaluated at the same instantaneous time and location), which allows the same model to108

be applied at different locations and with different temporal/spatial resolution, which we initially109

choose to be consistent with the frequency of the inputs. The model 𝑀 is empirical, but the goal110

of training is that it will learn to represent universal physical processes that apply independent111

of time and location. The model 𝑀 is generally nonlinear, but it encompasses linear models as112

well. Using a feed-forward neural network which only depends on the current state of the system113

makes this model easy to implement into existing land-surface models, since this is consistent with114

the differential equations being solved for other variables. By contrast, recurrent neural networks115

model 𝑧 directly, and require retaining a history of the state.116

The predictor variables were selected using prior knowledge about their role in snowpack evo-117

lution and based on their widespread availability. All selected variables showed a correlation118

coefficient to the target variable 𝑑𝑧/𝑑𝑡 equal to or above the conventional statistical significance119

threshold of ≈ 5%, validating their inclusion in the model.120

Choosing to predict 𝑧 using SWE instead of predicting 𝜌snow or vice versa was determined by121

current capabilities to offer the most value and utility to contemporary climate modeling techniques122

(however, the model choice is simultaneously adaptable to alternative use-cases or when SWE is123

not available, see sections 2b and 3d). Globally distributed datasets of SWE observations are more124

prevalent than those of 𝑧 or 𝜌snow, which broadens this model’s applicability. Within climate models,125

SWE is already explicitly calculated and tracked using conservation laws for water. Improving126
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𝑧 predictions given SWE is equivalent to improving the prediction of bulk density via Eq. (1).127

With improved snow densities, snowpack properties such as thermal conductivity and liquid-water128

holding capacity can be more accurately estimated.129

b. Predictive Model Structure130

The model 𝑀 consists of two components. The first is a “predictive” component with trainable131

weights, used for generating a prediction of 𝑑𝑧/𝑑𝑡. The second component of the network structure132

is a set of pre-determined functions with non-trainable weights, which enforce physical constraints133

on the prediction from the first component. The predictive network structure is shown in Fig. 1.134

Fig. 1. Structure of the predictive portion of the network. All blue lines indicate a trainable linear transformation

of the input (of 𝑘 variables), including a bias. Colors indicate the activation function used upon collection at the

node, as noted in the legend. The hyperparameter 𝑛 determines the width of the internal mixing layer.

135

136

137

The architecture of the predictive network was chosen with the intent of remaining as simple138

as possible while maintaining performance, resulting in the choice of only two hidden layers,139

followed by a dense collapsing layer without an activation to the predicted value. As the number140

of collapsed features is the same as the number of inputs, the network could also be interpreted as141

a dense network with one hidden layer to transform the input variables in a nonlinear manner to142

system-relevant features, followed by a regression on those features. The width of this mixing layer143

is determined by the hyperparameter 𝑛 multiplying the number of input features 𝑘 . This structure144

7



is easily adaptable to a different choice or number of input features for additional case studies or145

alternative target predictions.146

c. Model Constraints147

The remainder of the network exists to impose explicit and hard constraints on the overall148

prediction. Specifically, any threshold constraints can be explicitly enforced in an absolute manner149

with a max/min function fixed to the output of the network. This is immediately realizable with150

the anonymous function capabilities of most contemporary automatic differentiation and network151

packages, but can still be realized for legacy systems or specialized constructions through direct152

fixing of additional dense layers containing ReLu activation on top of any predictive model, where153

ReLu is the Rectified Linear Unit (for a breakdown of the process, see Appendix a). Our model154

constraints will be presented through such dense layers for maximal convenience of implementation155

under any system.156

1) Threshold Constraints for Snowpack Prediction157

Constraints for snowpack height evolution 𝑑𝑧/𝑑𝑡 should keep the snowpack depth rate of change158

within physical limits, with the goal of creating better generalizability as well as more stable159

behavior when the entire trained model 𝑀 is integrated over time. The constraints implemented160

for this specific application are as follows:161

• Enforce non-negativity of snowpack height within a time step of length Δ𝑡, 𝑀 ≥ −𝑧/Δ𝑡,162

• Enforce the inability of 𝑧 to increase without snowfall, 𝑃snow = 0 =⇒ 𝑀 ≤ 0. In principle,163

processes like wind drift can violate this constraint, but these affects are assumed to be minimal164

given the training data, see section 2d.165

These constraints can both be represented as upper and lower threshold functions, the lower as170

𝑓− = −𝑧/Δ𝑡 and the upper as 𝑓+ = ReLu(𝑝) × 1𝑃snow>0, where 𝑝 is the output of the predictive171

portion of the network and ReLu is the Rectified Linear Unit. In this case, 𝑧, 𝑃snow, Δ𝑡 are all172

nonnegative, meaning 𝑓− is nonpositive and 𝑓+ is nonnegative, with 𝑓+ ≥ 𝑓− (the equivalence case173

when 𝑧 = 0 and 𝑃snow = 0). These properties simplify the computational requirements to enforce174

the constraints when enacted as a sequence of ReLu layers (see Appendix a), resulting in a final175

structure for 𝑀 as depicted in Fig. 2. Though the chosen constraint for this setup includes the176
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Fig. 2. Architecture of 𝑀 , highlighting the constraint component attached to the predictive structure from Fig

1. The chosen structure enforces growth only under precipitation and non-negativity of snowpack height, and is

equivalent to a max/min block on the output. Weight colors indicate the constant’s sign and activation functions

follow the color scheme given in Fig. 1.

166

167

168

169

time step Δ𝑡, this does not explicitly impact the time dependency nor the resolution of the model.177

The predictive portion of the network contains no time nor time-step dependence, and its structure178

does not change after training. Choosing or changing Δ𝑡 appropriately scales the constraint, which179

permits its use in adaptive time-step schemes. This does not impact what values the predictive180

portion will output, only the physics-dictated minimum value that will be produced. In this manner181

the model is standalone, requiring only one round of training at one resolution to be used at any182

resolutions. It does not require additional control flow during use to maintain snowpack positivity183

when the scaling constant is adequately set—this reflects an inherent time-step independence that184

should not lead to significant time-step dependent effects when trained properly. The model is still185

limited by the temporal resolution of any input data. The only precaution is to train the model with186

data where the spread of calculated lower boundary values in the training data is mostly less than187

the expected spread of anticipated target values 𝑑𝑧/𝑑𝑡 during post-training usage. Alternatively,188

choosing a constraint form without Δ𝑡 for employment under a different use-case also results in189

timestep independence.190

2) Benefits of Structurally-Enforced Thresholding191

The capability of a simple thresholding function affixed to a predictive model is sufficiently192

modular to enable many different types of constraint construction(s) 𝑓 on a predictive model 𝑝 (or193
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even learned constraints, see Appendix a) with minimal overhead cost and no loss of runtime or194

resource complexity. It is impossible for a model with such thresholding to generate an output that195

lies beyond the threshold(s) dictated by 𝑓 . In the two-sided threshold case, an upper threshold 𝑓+196

and a lower threshold 𝑓−, the model 𝑀 can then be interpreted as a function which interpolates197

between two prescribed boundaries (e.g., a black-box model to predict drag between turbulent198

and viscous limits), or that describes departures from a prescribed boundary in the one-sided199

case. This facilitates integration into larger models obeying constraints from physical laws or200

control flow (even when determined from non-predictive inputs) without breaking conservation201

laws. The versatility of this approach provides utility for any predictive system where complex202

processes cannot be analytically modeled in a comprehensive manner but hard limiting cases or203

envelopes are theoretically provable. Hard boundaries also increase stability under an accumulated204

time-stepping setting since outputs remain realistic, and the enforcement of these boundaries205

during training enables gradients and subsequent weight updates to better predict values within206

the boundaries, especially when augmented with soft constraints from data filtering and/or penalty207

functions.208

d. Data209

For training, we used data from 37 sites in the United States Snow Telemetry (SNOTEL) network.210

We selected the sites based upon simultaneous availability of 𝑧, SWE, 𝜑, 𝑅, 𝑣,𝑇air, and precipitation211

data between hourly and daily time series of their entire reporting histories. We used averaged212

hourly data to fill missing values in reported daily time series and excised all sensor days without213

daily or hourly data. Among individual time series, entire sensor calendar years were discarded214

if a sensor showed sustained behavior of defective/unphysical measurements during that year215

(which were otherwise individually excised) to avoid the assumptions and selection biases of more216

sophisticated outlier methods, as the volume of available data at daily resolution was sufficient217

for such choices. The incremental changes in height Δ𝑧, water content ΔSWE, and time between218

resulting measurements Δ𝑡 were evaluated. All data points with Δ𝑡 > 1 day were excised, so that219

the predicted quantity, or target, is 𝑑𝑧/𝑑𝑡 ≈ Δ𝑧/Δ𝑡 for a given sensor day reporting start-of-day220

𝑧, SWE, day-averaged 𝜑, 𝑅, 𝑣, 𝑇air, and total daily precipitation. This resulted in 103854 usable221
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data points, spanning a wide variety of climates (Fig 3), which will improve the model’s ability to222

generalize to different climates.223

Fig. 3. Distribution of SNOTEL sites used for training the network. (a) Training sites as visualized over the

United States. (b) Training sites visualized with elevation vs their average nonzero snowpack height, 𝑧+.

224

225

The precision of measurements of snow depth in the data is 1 inch, and it is 0.1 inches for226

SWE, creating a discretization of the target feature to 1 inch/day. High or integer discretization of227

the target space hampers the ability of a regression network to learn the underlying relationships228

between predictors and target. Therefore, we averaged the resulting data over a moving consecutive229

𝑁-day window, preserving start-of-window 𝑧 and SWE, accumulating precipitation, and averaging230

the remaining features and target to create a denser spread in the feature space, as well as converting231

units to metric where applicable. This averaging also served to smooth remaining noise and sensor232

defects in the data. However, such averaging also tends to lessen extremes, which are important in233

timeseries prediction (see section 2e). Because of this, we left 𝑁 as a hyperparameter to explore234

the outcomes of these competing effects. We kept an unaveraged copy of the data, including data235

with Δ𝑡 > 1 day, for model performance evaluation.236

To soft-constrain the network toward more physical behavior and remove data where averaging237

created unrealistic values, intentional “physical” filtering was carried out on the resulting data238

after averaging over 𝑁 days, including removing data where 𝑧 was nonzero but SWE = 0 (an239

unphysical input), where 𝑑𝑧/𝑑𝑡 > 0 but precipitation was zero (snowpack cannot spontaneously240

increase without precipitation save for local increases by wind drift, but the range of wind speeds241
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in the training data was predominantly under threshold speeds for snow transport found by Li and242

Pomeroy (1997); implying negligible influence), where 𝑑SWE/𝑑𝑡 was greater than precipitation243

(an unphysical result as snow density must be less than or equal to water density, and the only244

influx of water into the system is precipitation since sites were not subject to river runoff), and245

where 𝑧 < SWE (snowpack cannot consist of supercondensed water). Data was then excised where246

SWE, 𝑧, and accumulated daily precipitation were all less than some small threshold 𝜖 = 0.5 cm,247

as we wished to focus on learning snow pack evolution when snow was present, and excess zeros248

in the target space could drive the network to predict 𝑑𝑧/𝑑𝑡 = 0 more frequently to lower average249

error, precluding learning of more interesting behavior. Similarly, we removed data simultaneously250

satisfying 𝑇air > 9◦C and accumulated 𝑑𝑧/𝑑𝑡 was less than 2𝜖 , removing portions of the time series251

corresponding to summer. This heuristic for removing summer zeros was preferable to temporal252

filters for summer months, as the onset and disappearance of snowpacks was different for every253

training site and every year.254

The final step was to estimate the rate 𝑃snow from SNOTEL total precipitation amount (water255

equivalent of water and snow combined) using 𝑇air and 𝜑, an empirical model shown to faithfully256

derive the water-snow phase split with over 88% accuracy (Jennings et al. 2018). The model257

follows258

𝑓snow =
1

1+ 𝑒𝛼+𝛽𝑇air+𝛾𝜑
, (3)

with 𝛼 = −10.04, 𝛽 = 1.41 ◦C−1, and 𝛾 = 9 (with the relative humidity 𝜑 ∈ [0,1]). The precipitation259

rate 𝑃snow was then set to this fraction of the total precipitation divided by 𝑁 days, and converted260

from in day−1 to m s−1. 𝑃rain, the remaining fraction of precipitation, was discarded and not used261

as an input feature. For application of 𝑀 , 𝑃snow could be measured at a site, provided by renalysis262

data, or provided by the atmospheric model in a coupled simulation.263

Features were then scaled by their standard deviations to keep all features in a similar range,264

and the target was scaled by its absolute maximum. These scaling constants were fixed into 𝑀 , to265

prevent the need for user manipulation of data prior to use.266

e. Training and Testing267

While achieving a small absolute error is important in predictive modeling, when accumulating268

predicted 𝑑𝑧/𝑑𝑡 to evolve a snowpack over time, correctly predicting extreme values holds increased269
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importance relative to that in other regression-learning applications due to error accumulation. For270

example, the integrated 𝑧(𝑡) time series may not reflect a quickly growing or depleting snowpack,271

causing modeled snowpacks to lag behind observations early in the winter season, or persist into272

the summer months and subsequently skew albedo and runoff predictions. This problem has273

persisted in existing physical snowpack models based on Noah, Crocus, and SNOWPACK (Gao274

et al. 2021; Luijting et al. 2018; Lundy et al. 2001; Wever et al. 2015; Vionnet et al. 2019). Standard275

regression training will often under-predict extreme values without strong target correlation or high276

frequencies of extreme data, both of which rarely exist in the training data. To counter these effects277

and promote improved predictions, extremes were emphasized by creating the custom loss function278

𝐿 =
1
𝑁𝑑

𝑁𝑑∑︁
𝑖=1
𝑤𝑖 |𝑦𝑖 − �̂�𝑖 |𝑛1 , (4)

where 𝑤𝑖 is a weighting factor,279

𝑤𝑖 = 1+ |𝑦𝑖 |𝑛2 , (5)

and 𝑁𝑑 is the number of training examples used in the batch, �̂�𝑖 is the model prediction, 𝑦𝑖 is280

the target, and 𝑛1, 𝑛2 are constant positive integers. Optimizing a loss with (𝑛1 = 1, 𝑛2 = 0) and281

(𝑛1 = 2, 𝑛2 = 0) is equivalent to optimizing the average 𝐿1 and 𝐿2 losses, respectively. Positive 𝑛2282

will additionally penalize the model for poor extreme prediction without changing the convexity283

of the loss function since the targets are constants.284

Training and hyperparameter selection of the model were carried out on a leave-one-out basis,285

with the averaged and filtered training data for all but one of the 37 SNOTEL sites being used286

as training input. The unaveraged and unfiltered (𝑁 = 1 and including gaps with Δ𝑡 > 1 day, see287

section 2e.3) left-out site data was then used for scoring for hyperparameter selection. For testing288

the model with the optimal hyperparameter configuration, forcing data was also gathered from289

SNOTEL sites in Alaska, as well as additional datasets from Kühtai, Austria (Krajči et al. 2017),290

and Col de Porte, France (Lejeune et al. 2019). These data test the model’s ability to apply in291

climates outside the training set of the 37 SNOTEL sites.292

Model implementation was carried out in the Julia language under the Flux framework (Innes293

et al. 2018; Innes 2018) and the RMSProp optimizer (Hinton et al. 2014). Training the network for294

100 epochs on all training data takes less than 30 seconds on a single Intel i9 CPU with no GPU295
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usage, and the model storage takes up less than 4 kilobytes. Direct model evaluation scales linearly296

with input size in both time and memory when tested between 10 and 100000 inputs, requiring on297

average 1 kilobyte and 0.5 microseconds per evaluation. Linear scaling in memory and time also298

holds for timeseries generation.This scaling from model structure choice enables lower overhead299

than other more complex state-storage models like recurrent networks.300

1) Evaluation metrics301

Model performance was assessed both in terms of its ability to recreate targets from inputs302

directly (pure regression to quantify ability to learn trends in training data) as well as its ability to303

use its own outputs recursively in the creation of a timeseries for the entire observational period,304

including summers (quantifying ability under intended usage). Unlike regression predictions,305

which use observed snow depth inputs to predict the change in 𝑧 across a range of conditions to306

compare to observed data, the timeseries prediction utilizes the network as a neural ODE, in a307

self-driving manner using site data as climate forcings, where the snowpack height follows with308

forward Euler steps as309

𝑧𝑖+1 = 𝑧𝑖 +Δ𝑡𝑀 (𝑧𝑖,SWE𝑖, 𝜑𝑖, 𝑅𝑖, 𝑣𝑖,𝑇𝑖, 𝑃𝑖). (6)

The resulting timeseries is evaluated against the observed timeseries. There are recent continuous310

adaptations of this form of discrete neural ODE (Chen et al. 2018), though such adaptations are311

unnecessary for this case study because the forcing data are available discretely. Evaluation metrics312

included mean absolute error (MAE) and root mean square error (RMSE) losses in addition to313

bias and residual variance, the direct regression slope between observed and predicted outputs314

(e.g., 𝑚 for �̂� = 𝑚𝑦), and the median percent error of the generated values (for timeseries, this315

represents the median percent error of all generated 𝑧 values, for pure regression, this is the median316

percent error of all generated 𝑑𝑧/𝑑𝑡 values). For generated timeseries, the Nash-Sutcliffe efficiency317

(NSE, from Nash and Sutcliffe (1970)) was also calculated as well as an average snowpack percent318

error MAE/𝑧+, where 𝑧+ is the average nonzero snowpack height. Faithful reproduction of the319

observed time series on out-of-sample data thus indicates valid learning of physical processes in320

the differential equation as well as an ability to generalize to additional climates.321

We also compared the model performance against a standard linear regression model of snowpack322

evolution estimated from the same training data (including 𝑧 as a predictor, but without the inclusion323
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of SWE as a predictor, due to its high correlation with 𝑧 (Hawkins 1973)). Unlike the neural model324

where physical thresholds are enforced by the model and beneficially impact the training of the325

model weights, the linear model is estimated via least-squares, so thresholds for the linear model326

to enforce snowpack positivity are only enforced during the timeseries generation process in the327

same manner as they would be in the control flow of a larger hydrology model.328

2) Snow density329

Given 𝑧 and SWE, the snow density is known, via Eq. 1. This permits computation of a330

predicted snow density from the input SWE and generated 𝑧 timeseries, and we compared this with331

the similarly computed observed values. Timeseries values were only compared when observed 𝑧332

values were nonzero. The observed data was discrete while the model output was continuous, so333

predicting a near-zero 𝑧 during nonzero observed 𝑧 and SWE would result in severely unphysical334

densities which would skew the comparison metrics and obscure interpretation of the model335

performance during normal snowpack conditions on average. To counter this fact, any predicted336

nonzero 𝑧 lower than the minimum observed nonzero 𝑧 value was treated as zero, and the resulting337

predicted density set to that of water. Counts and therefore frequencies of days where observed338

𝑧 was zero and predicted 𝑧 was nonzero (false nonzeros), as well as days where observed 𝑧 was339

zero and predicted 𝑧 was nonzero (false zeros) and remaining days with unphysical densities were340

also recorded. This allows investigation of errors in density only during the valid snow season341

when density would be utilized in larger hydrology processes. The inverse relationship between342

𝑧 and density will underscore failures of the model in the beginning and end of the snow season343

as well as the failure counts, since predicting minimum 𝑧 during an established snowpack will344

result in larger calculated density values, and therefore density errors. Such inflation due to the345

inverse relationship will also serve to skew the NSE metric as large departures from observed346

values accumulate in quadrature.347

3) Handling gaps in data348

Particular days in the unaveraged and unfiltered (𝑁 = 1) validation data were missing one or349

more input features, creating holes of varying size (Δ𝑡 > 1 day) in the timeseries that prevented350

continuous generation by the neural model via Eq. 6. To handle these gaps and permit generation351

of longer continuous timeseries for benchmarking against data, holes of size 𝐾Δ𝑡 for any integer352
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𝐾 ≤ 𝐾max were traversed via353

𝑧𝑖+𝐾 = 𝑧𝑖 + (𝐾Δ𝑡)𝑀 (𝑧𝑖,SWE𝑖, 𝜑𝑖, 𝑅𝑖, 𝑣𝑖,𝑇𝑖, 𝑃𝑖), (7)

and, for 𝐾 > 𝐾max, the timeseries was “reset” via 𝑧𝑖+𝐾 = 𝑧𝑖+𝐾 , with ensuing calculations again354

handled by Eq. 6. Traversals resulting in negative snowpack due to the multiplication of the355

threshold-limited 𝑀 by 𝐾 were instead set to zero and allowed to continue. In this manner,356

the model can also be tested against its ability to surpass holes in the data in use-cases where357

data streams are not complete, and reduce the number of “resets” during comparison that would358

otherwise serve to advantageously skew performance metrics. However, keeping a maximum359

traversal 𝐾max and maintaining snowpack positivity also prevents the accumulation of errors that360

are not due to the model and thereby permit a fair evaluation of performance. The number of361

resets on a given timeseries generation was tracked. Only 1186 gaps existed in the 103854 days362

of sensor data, with ≈ 10% greater than 7 days and less than 5% greater than 30 days. Choosing363

𝐾max = 30 resulted in 14 sites having 0 resets, an absolute maximum of 8 resets on a timeseries of364

length 5116 days, and a maximum percentage of resets for 1 reset on a timeseries of length 173365

days. This choice was kept for the remainder of the investigation, as preliminary testing showed366

smaller choices of 𝐾max to lead to variations of pack percentage scores by less than 1% on average367

and RMSE by less than 1 cm on average.368

3. Results369

a. Hyperparameter Selection370

The number of averaged days 𝑁 , the network structural constant 𝑛, and the loss function param-371

eters 𝑛1 and 𝑛2 were evaluated as hyperparameters. All networks were trained over 200 epochs372

and a batch size of 64. Testing over 𝑁 ∈ {1,2,3,4}, 𝑛 ∈ {1,2,3,4,5,6,7,8}, 𝑛1 ∈ {1,2}, and373

𝑛2 ∈ {0,1,2,4} with 37-fold leave-one-out cross-validation resulted in 9472 total networks trained.374

The loss function of each network configuration on the validation set was tracked every 10 epochs,375

and the best performing weight set as well as the indicative epoch was kept for evaluation and com-376

parison to inform hyperparameter selection. As the loss function varied between hyperparameter377

configurations, the NSE for generated timeseries and RMSE on the validation set, both in terms378

16



of regression on 𝑑𝑧/𝑑𝑡 and on the generated timeseries, were the primary metrics used in judging379

model fitness.380

We found that performance on the validation set regarding regression on 𝑑𝑧/𝑑𝑡 was similar381

in magnitude to that of the training set, indicating good model generalizability. Regression382

performance on the validation set of 𝑑𝑧/𝑑𝑡 values decreased with increasing 𝑁 (smoothing out383

training data and lessening extremes compared to validation values) and increased with increasing384

𝑛 (making the model more complex) until plateauing or overfitting decreased performance around385

𝑛 = 6. Performance did not follow any discernible trends in 𝑛1 but decreased for intermediary 𝑛2386

values with regards to direct evaluation.387

However, good performance on the regression task is not sufficient to guarantee performance in388

the generation of timeseries, as small errors from poor predictions of extremes or overfitting can389

accumulate over time. Table 1 and Fig. 4 show the averaged model scores over particular (𝑛1, 𝑛2)390

and (𝑁,𝑛) configurations. The variation between most configurations is on the order of a few391

percent, and the variations are suppressed by averaging over all subconfigurations; however, the392

timeseries error is smallest at a value of 𝑛2 = 1, weakly validating the emphasis of extreme points393

in the loss function. Increasing 𝑛 (which controls the size of the network) beyond intermediary394

values for any 𝑁 does not yield any change in performance.395

Table 1. Performance metrics of the generated timeseries for a particular (𝑛1, 𝑛2) configuration. Notice that

(1, 0) is the standard average 𝐿1 norm and (2, 0) is the standard average 𝐿2 norm. These are averaged over the

choices of 𝑁,𝑛 and over the 37-fold cross-validation, which serve to lessen the variation across the variables.

The median percent error is exaggerated relative to pack percent error due to overprediction whenl 𝑧 is small.

396

397

398

399

(𝑛1, 𝑛2) MAE (𝑚) RMSE (𝑚) NSE Median Series Err. (%) Median Regression Err.(%) Pack Err. (%)

(1, 0) 0.0619 0.105 0.926 16.7 59.0 8.45

(1, 1) 0.0608 0.103 0.930 16.3 58.3 8.30

(1, 2) 0.0614 0.104 0.929 16.6 58.9 8.39

(1, 4) 0.0619 0.105 0.927 16.7 59.1 8.43

(2, 0) 0.0643 0.108 0.924 17.2 57.1 8.78

(2, 1) 0.0624 0.105 0.929 16.7 56.8 8.52

(2, 2) 0.0634 0.107 0.927 17.0 57.3 8.64

(2, 4) 0.0639 0.107 0.924 17.2 57.3 8.72
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Fig. 4. Nash-Sutcliffe Efficiency of the generated timeseries for a particular 𝑁 , 𝑛 configuration. These are

averaged over the choices of (𝑛1, 𝑛2) and over the 37-fold cross-validation, which reduces the variation across

the variables. Unlike the training and validation errors, the patterns are more complex and find that particular

configurations perform better than others for timeseries generation.

400

401

402

403

The hyperparameter configuration with the lowest timeseries error had 𝑁 = 1, 𝑛 = 5, 𝑛1 = 1,404

𝑛2 = 1 when trained for 100 epochs. We maintained this configuration for further investigation of405

performance. This model configuration was able to generate snowpack timeseries with under 7%406

error in most cases with an absolute bias of under a centimeter and with Nash-Sutcliffe Efficiencies407

of over 0.97. Full performance statistics of the model configuration are given in Table 2.408

b. Optimal Model Performance on Test Data412

The performance of the model across 5 Alaskan testing sites, as well as the France and Austria413

sites, are summarized in Table 3. The model performs much more consistently across the testing414

sites than the cross-validation sites. The model shows ≈ 9% average error on total snowpack415

prediction with a RMSE of 10 centimeters and a MAE of about 6 centimeters, which is on par416

with or smaller than established models and other more complex models during testing (Vionnet417

et al. 2012; Brun et al. 2013; Viallon-Galinier et al. 2020; Luijting et al. 2018; Ebner et al. 2021;418

Meloche et al. 2022; Gao et al. 2021; De Michele et al. 2013a). These established models do not419

take observational 𝑆𝑊𝐸 as input, but are either full hydrology models (compared to 𝑀’s intended420
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Table 2. Statistics of the best-performing model (𝑁 = 1, 𝑛 = 5, 𝑛1 = 1, 𝑛2 = 1) with regards to timeseries

prediction across all 37-fold cross-validations. All performance statistics also show that the median is better than

or equal to the mean, suggesting more isolated cases of less performance and better generalizability.

409

410

411

Statistic Minimum Maximum Mean Median

MAE (𝑚) 0.0110 0.251 0.0532 0.0480

RMSE (𝑚) 0.0282 0.394 0.0907 0.0775

NSE 0.652 0.989 0.949 0.970

Bias (𝑚) -0.251 0.121 -0.0126 0.0086

𝜎𝑟𝑒𝑠𝑖𝑑 (𝑚) 0.0282 0.304 0.0846 0.0730

Regression Slope 0.549 1.100 0.954 0.962

Median Series Err. (%) 4.10 69.0 14.7 11.9

Median Regression Err (%) 40.1 100.0 58.1 55.8

Pack Err. (%) 4.30 24.8 7.21 6.25

role as a subcomponent within such a model, and would utilize their predicted 𝑆𝑊𝐸 values), or421

input historical snow depth data such as the mean annual snow depth. Yet, our ML model does not422

require history of a snow states or storage of microphysical states to achieve similar results. The423

model also shows about 3× lower error than the linear model across the same tests (summarized424

in Table 4), indicating the linear parameterization does not generalize as well even when trained425

on the same data. The plots in Fig. 5 show the neural model also performs better at growing and426

depleting the snowpack at pace with observations, while the linear parameterization tends to lag427

into the summer months or lag on sufficient growth speed, or create snowpacks inbetween seasons.428

Figure 6 displays the resulting timeseries from using generated snowpack evolution to calculate439

bulk density, and Table 5 shows the numerical comparison of estimated bulk density against440

observations over all 7 testing sites. The neural model still outperforms the linear model in this441

regard and now by a factor of about 5 (compare the linear model results in Table 6). Without an442

explicit constraint preventing 𝑧 from decreasing below a newly-updated SWE, the neural model443

occasionally predicts a new 𝑧 that is less than the new SWE during small snowpacks, which causes444

a large density error, though on average the model can predict observed density to under 25% error.445
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Fig. 5. Subsets of the generated timeseries by the neural model and the linear model. The neural model

outperforms the linear parameterization when tested out-of-sample, while the linear model tends to create

snowpacks during summer months or lag on growth or decay relative to observations.

429

430

431

c. Model Dissection456

1) Model Residuals457

In order to assess bias in the model, we looked at correlations between predicted and true values458

of 𝑑𝑧/𝑑𝑡 and between the residuals and the predicted values. Fig 7 shows the results for the459

neural and linear models. The correlation score for predicted vs true values for the neural model460

is 𝑟 = 0.77, while the linear model shows a correlation score of 𝑟 = 0.70. Both models continue461

to show a tendency to under-predict extreme values and perform similarly on rarer extreme events,462

though the neural model performs with smaller residuals for small-magnitude events, especially463

for decreases in 𝑧.464

Both models show no discernible trends in the residuals vs. the output value, but they tend to still465

under-predict the magnitude of extreme values. This may be because the models were exposed to466
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Table 3. Performance of the neural model across all 7 testing sites. Including the sites with highly varied

scoring from validation has lowered the variance of performance of the model over the test cases and improved

the ability of the model to generalize to different climates. The median is now much closer to the mean, implying

a more normal spread in behavior for a given climate.

432

433

434

435

Statistic Minimum Maximum Mean Median

MAE (𝑚) 0.0256 0.098 0.0620 0.0712

RMSE (𝑚) 0.0450 0.1615 0.107 0.1197

NSE 0.850 0.983 0.940 0.945

Bias (𝑚) -0.070 0.091 -0.0151 -0.0175

𝜎𝑟𝑒𝑠𝑖𝑑 (𝑚) 0.0414 0.1336 0.0966 0.1018

Regression Slope 0.849 1.200 0.941 0.916

Median Series Err. (%) 8.47 28.70 14.98 14.93

Median Regression Err (%) 50.4 71.0 60.9 66.1

Pack Err. (%) 5.17 16.23 9.03 8.57

Table 4. Performance of the linear model across all 7 testing sites. The poor performances indicated by the

maximums and minimums are indicative of the inability of the parameterized model to generalize, even though

it is trained on the same data as the neural model.

436

437

438

Statistic Minimum Maximum Mean Median

MAE (𝑚) 0.0610 0.3241 0.2006 0.1987

RMSE (𝑚) 0.1123 0.4805 0.3264 0.3374

NSE 0.3173 0.6940 0.5204 0.5153

Bias (𝑚) -0.3240 0.1381 -0.1071 -0.0932

𝜎𝑟𝑒𝑠𝑖𝑑 (𝑚) 0.1010 0.3550 0.2747 0.3207

Regression Slope 0.4051 0.6395 0.7367 0.6527

Median Series Err. (%) 34.49 63.95 46.01 44.23

Median Regression Err (%) 46.3 59.7 54.4 55.3

Pack Err. (%) 20.45 32.98 27.41 29.66

more data near small values of 𝑑𝑧/𝑑𝑡, which could lead to better predictions of smaller values at467

the expense of extremes.468

2) Feature Importance of Neural Model472

Table 7 shows the feature importance of each predictive variable, equal to the percentage increase477

in RMSE when the given feature is randomly shuffled, for both direct (regression) predictions as478

well as when generating timeseries. The wind speed and 𝜑 remain relatively unimportant in both479
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Fig. 6. Density plots for two of the same timeseries from Fig 5. The neural model again outperforms the linear

model, though both occassionally lag in snowpack prediction at the start or end of the season, creating spikes at

the beginning and end of each season which will serve to skew the Nash-Sutcliffe statistic. Discontinuity comes

from the corner cases described in section 2e.2.

446

447

448

449

Table 5. Performance statistics for the model’s generation of density timeseries. The large point-errors for

predicting 𝑧 < SWE as well as incorrectly predicting the snow season start or end skew the Nash-Sutcliffe score,

but the model shows an ability to recreate density with an error of about 25%.

450

451

452

Statistic Minimum Maximum Mean Median

MAE (kg m−3) 0.0396 0.1174 0.0723 0.0671

RMSE (kg m−3) 0.0846 0.2616 0.1577 0.1660

Bias (kg m−3) -0.1046 0.0665 0.0075 0.0016

𝜎𝑟𝑒𝑠𝑖𝑑 (kg m−3) 0.0829 0.253 0.1499 0.1336

Regression Slope 0.687 1.259 1.012 1.029

Median Series Err. (%) 8.94 21.8 14.86 16.77

Pack Err. (%) 15.56 32.16 24.49 26.23

False Zeros (%) 0.30 0.86 0.61 0.83

False Nonzeros (%) 0.67 4.64 2.01 1.97

Unphysical Density (%) 0.0 0.96 0.29 0.03

cases, and for reduced complexity both can be removed from the model or imputed without loss of480

accuracy (see section 3d). SWE becomes more important for generation of timeseries and becomes481

the predominant predictor variable, while 𝑧 itself becomes less important. The reduction in the482

importance of 𝑧 in timeseries generation suggests a robustness of the model to accumulated errors483

since better 𝑑𝑧/𝑑𝑡 values are predicted even under an input of incorrect 𝑧 in the timeseries case484

vs. the regression case, which likely help it succeed over the linear regression model. It is also485
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Table 6. The performance of the linear parameterization on the testing sites for bulk density timeseries. Errors

are roughly five times that seen in the neural model, and the linear model is considerably worse with regard to

false zeros, false nonzeros, and predicting unphysical densities.

453

454

455

Statistic Minimum Maximum Mean Median

MAE (kg m−3) 0.0200 0.8074 0.0395 0.0286

RMSE (kg m−3) 0.0466 1.927 0.987 0.661

Bias (kg m−3) -0.050 0.727 0.275 0.220

𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (kg m−3) 0.428 1.785 0.937 0.649

Regression Slope 0.826 3.649 2.027 1.949

Median Series Err. (%) 32.74 123.27 64.20 53.40

Pack Err. (%) 48.90 292.60 142.08 126.99

False Zeros (%) 0.95 8.70 5.26 5.83

False Nonzeros (%) 0.0 10.58 2.93 1.75

Unphysical Density (%) 1.04 12.57 5.41 4.05

Table 7. Relative error scores generated in both direct prediction and timeseries generation for a random

shuffling of the feature. The reported scores show the averages calculated over 10 random shufflings per feature

while keeping other features constant. The higher the number, the larger an impact that feature has on the model

output in a direct regression or accumulated time-stepping setting.

473

474

475

476

Feature Direct Score Series Score

𝑧 3.832 1.227

SWE 3.406 5.413

𝜑 1.082 1.101

𝑅 1.301 2.027

𝑣 1.012 1.002

𝑇 1.352 3.804

𝑃 1.559 2.070

observed that insolation, temperature, and precipitation hold increased importance in timeseries486

generation relative to their direct regression counterparts.487

3) Physical Behavior of Model488

In order to interpret how the model makes a prediction, we considered the model output as489

a function of air temperature and either precipitation or insolation, for fixed values of the other490

variables and at fixed snow depth.491
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Fig. 7. Predicted vs. observed targets and residuals against the modeled target by the neural and linear models.

Both models continue to under-predict extremes, but the neural model performs slightly better in this regard than

the linear model.

469

470

471

In Fig. 8a, we see that, when air temperatures are below freezing, increasing the snowfall492

produces an increase in 𝑑𝑧/𝑑𝑡, in an approximately linear fashion (i.e., contours becoming more493

evenly spaced and less curved). Above the freezing temperature, the snowfall rate needs to be larger494

to produce the same 𝑑𝑧/𝑑𝑡. At some point, for low enough precipitation rates and warm enough495

temperatures, 𝑑𝑧/𝑑𝑡 is negative, in accordance with physical expectations. Interesting behaviors496

occur in some regimes, as the no-growth (𝑑𝑧/𝑑𝑡 = 0) contour dips with increasing precipitation497

in the 𝑇 − 𝑃snow plane as opposed to the expected flat behavior otherwise for an average winter498

day (𝑅 ≈ 60 W m−2 averaged across site data in February) with small snowpacks. Likewise, the499

inability of all contours to become fully vertical at colder temperatures implies there is no learned500

minimum density of accumulated snowfall, though most contours become do increasingly vertical501

for colder temperatures. Since these behaviors persists for larger snowpacks (the plot was generated502
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for a shallow snowpack), this can be reinterpreted as regions of space where the model failed to503

fully learn the expected representation and would benefit from additional training data in these504

regimes to better encapsulate the required effects.505

Figure 8b considers the case of how air temperature and insolation affect snow depth, at zero506

snowfall. We see that snowpack depletion begins shortly after average air temperature increases507

above freezing, as well as for increasing insolation. It also reflects an inability of the snowpack to508

grow under a lack of snowfall, as all output values are nonpositive.509

The variable spacing of contours also indicates a learning of nonlinear behavior, as opposed to a510

linear regression model, which will have linear and evenly spaced contours everywhere in parameter511

space. The contours are also not entirely smooth due to the choice of activation functions, which512

have discontinuous derivatives.513

The model thresholds also prevent the snowpack from decreasing to a negative value, showcas-517

ing an ability to replicate physical behaviors as well as physical limitations. Likewise, growth518

contours shift in the negative direction with increasing wind-speed (indicating a learning of wind-519

compaction; not shown), and slightly shift in the positive direction for increasing relative humidity520

(not shown).

Fig. 8. Example outputs from the model over two sets of snowpack conditions. In each case one threshold

condition is visible, i.e., where the snowpack cannot deplete beyond its starting value, and cannot grow without

snowfall.

514

515

516

521
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4) Generalizability522

Figure 9 shows the elevation vs. mean nonzero snowpack height 𝑧+ scatterplots for all training523

and all seven testing sites in a similar manner to Fig. 3, though the sites are now colored by the524

performance of 𝑀 for pack percentage error on 𝑧 and pack percentage error on density (equal to the525

MAE of the density timeseries divided by the average true density value), as well as direct RSME526

and NSE on computed timeseries.527

Fig. 9. Performance of fully trained network across all training and testing sites with regards to RMSE and

NSE, as well as the total pack percent errors for 𝑧 and density. Testing sites are boxed in gold.

528

529

The model performs well comprehensively with regards to pack percentage error on 𝑧, with530

less than a 20% error on all sites and most sites under 10%, while density errors are higher by531

roughly a factor of 4–5 (though these averages are inflated by individual extreme densities at the532

beginning and end of the prediction season, as is visible in Fig. 6). The model also performs533

similarly on the available testing site data compared to the training data, which covers much lower534
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elevations than the training data, as well as the smallest average nonzero snowpack height, implying535

a strong ability to generalize to out-of-sample regimes, even for density calculations. No trend536

with elevation appears in the results, corroborating generalizability rather than elevation-induced537

indirect effects.538

5) Threshold Importance539

Our model employs two thresholds for snowpack evolution, which prevent accumulation under543

no precipitation and prevent the loss of more snow than exists in the snowpack. Figure 10 shows the

Fig. 10. Performance of both models when thresholding is not enforced. Behavior is similar across all testing

and training sites, this site requires no timeseries resets, so all negative snowpacks are entirely created by the

model.

540

541

542

544

result of the neural and linear models when no thresholds are implemented within the training nor in545

the control flow of timeseries generation on a testing site in Alaska, with no gaps in the forcing data.546

Without the threshold designed specifically to prevent snowpack height from becoming negative,547

both models predict negative heights in the summer, though this error is worse for the linear model.548

This happens in every generated timeseries for all models. Without the threshold designed to549

prevent accumulation of snow without precipitation, the neural model predicts an increase in the550

snowpack height for 2.7% of forcing inputs where no snow precipitation occurs. Both types of551

errors are unphysical. Without thresholds, the average RMSE of the neural model on generated552
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timeseries increases by two centimeters and the pack percentage error increases by 3%, implying553

that the thresholds weakly improve performance in addition to maintaining adherence to physical554

constraints.555

d. Model adaptability and variability556

1) Reduced variable set557

The results of section 3c.2 suggest that wind speed is not an important variable for enabling558

model performance, so additional SNOTEL sites without wind speed data can also be tested for559

additional validation by imputing the wind speed input with the constant average of the training560

data. Furthermore, the remaining input features without wind speed data can be entirely inferred561

from satellite feeds, increasing the usability of the learned model in real-world settings or simpler562

hydrology models without requiring the assimilation of multiple data sources. As relative humidity563

was the second least important variable, the performance under the removal of this variable as well564

can be tested for an overall further reduction in model complexity.565

Table 8 shows the results over four additional testing sites in Alaska with the mean wind speed570

imputed, with the mean wind speed and the mean relative humidity imputed, as well as the results571

when training an entirely new network without the wind speed or relative humidity variables. The

Table 8. Scores of model 𝑀 when run on additional testing sites without wind speed or relative humidity

as predictors. Performance of the model is roughly the same in all cases and suggests that removing predictors

instead of imputing them is a beneficial choice due to similar performance but with further reduced computational

complexity.

566

567

568

569

Statistic Impute 𝑣 Impute 𝑣, 𝜑 No 𝑣, 𝜑

MAE (m) 0.0598 0.0644 0.0556

RMSE (m) 0.1097 0.1120 0.0979

NSE 0.938 0.943 0.960

Median Series Err. (%) 12.08 13.17 13.09

Pack Err. (%) 8.06 8.50 7.36

572

performance scores of 𝑀 under all scenarios are nearly identical to those presented in Table 3 and573

to each other. That is, removing these features vs. imputing them does not significantly impact574

performance relative to their inclusion, even on out-of-sample data in new climates.575
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The ability to perform under missing variables extends the usability of the model under situations576

where data are not available or gaps exist at a given site or simulation, as well as further reduces the577

model complexity. The ability to add, remove, and impute features under the modular assembly of578

the model is straightforward.579

2) Finer Resolution Predictions580

The only terms in 𝑀 containing units of time are the input precipitation, the output, and the581

lower threshold on the output, all of which are rates. The prediction of rates 𝑑𝑧/𝑑𝑡 instead of solely582

accumulated 𝑑𝑧 over a predetermined time step means the model can be tested at time steps that583

differ from the time increment of the data it was trained with, without retraining of the model. The584

site data from Kühtai contains resolution at 15-minute intervals, allowing the model to be evaluated585

at weekly, daily, hourly, and 15-minute resolution, of which the results are displayed in Fig. 11 and586

Table 9.587

Table 9. Performance of the model 𝑀 at different time resolutions. There is a jump in error when departing

from the resolution the model was trained at, but performance remains near-constant between hourly and 15-

minute resolution.

588

589

590

Statistic/Resolution Weekly Daily Hourly 15-Minute

MAE (m) 0.0895 0.0645 0.1143 0.1181

RMSE (m) 0.1527 0.1134 0.1882 0.1950

NSE 0.901 0.945 0.849 0.838

Median Series Err. (%) 21.06 14.92 27.01 27.54

Pack Err. (%) 11.90 8.57 15.24 15.73

The timeseries generated with the four different timesteps are shown in Fig 11. There is an593

increase in the error when the timestep is both larger or smaller than Δ𝑡 = 1 day, the value the594

model was trained with. However, the error does not significantly worsen when moving from an595

hourly to a 15-minute temporal resolution. This loss of performance may be due to the range of596

values for 𝑑𝑧/𝑑𝑡 and precipitation seen at higher-resolution and more coarsely grained data. While597

the daily data might show snowpacks increasing a few centimeters over a day, the finer resolution598

may show the same total deposition over a few-hour period (more extreme values of 𝑃), resulting599

in values of 𝑑𝑧/𝑑𝑡 that are 10–20× larger in magnitude than those present in the daily training600

data. Likewise, at the weekly scale, true observed extreme events that drive extremes in outputs are601
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Fig. 11. Output of network vs linear model at different resolutions for a subset of the site data from Kühtai,

Austria. Both graphs overlay outputs at different resolutions for direct comparison.

591

592

driven to smaller forcing inputs by averaging, while the accumulation of fine-resolution extreme602

events in the observed data is manifested in the start-of-week (not weekly averaged) observed 𝑧603

values. The linear model, on the other hand, is more robust to resolution changes and has roughly604

constant performance across resolution changes; however, it is worse in all regards compared with605

the full model 𝑀 . The performance of the neural model demonstrates an ability to generalize to606

other temporal resolutions, but performance would likely be improved if the training data contained607

a larger range of 𝑑𝑧/𝑑𝑡 training values (for instance, by including both hourly and daily resolution608

training data).609

3) Alternative Use-Cases610

The SNOTEL data contains both SWE and snow depth; we chose to use SWE as input to a model611

for 𝑑𝑧/𝑑𝑡 in anticipation of use within a bulk snow model, where 𝑆𝑊𝐸 is modeled prognostically612

using conservation laws. An alternative use-case is predicting available snow water content (SWE)613

in summer months following snowmelt of snowpacks with measured depths.614

By swapping SWE and 𝑧 features, the model can be retrained to instead predict 𝑑SWE/𝑑𝑡 when615

provided 𝑧 data. We carried out this experiment with no further changes to the training pipeline.616

The results on all seven testing sites for training the retrained model (delineated as 𝑀′) on the 37617

SNOTEL sites to instead predict 𝑑SWE/𝑑𝑡 are shown in Table 10. The results are also repeated618

for using 𝑀′ and removing both relative humidity and wind speed variables in the same manner as619
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in section 3d.1, resulting in a reduced model (now labeled 𝑀′′) 𝑑SWE/𝑑𝑡 = 𝑀′′(SWE, 𝑧, 𝑅,𝑇, 𝑃)620

which is also shown in Table 10.621

Table 10. Results over all seven testing sites by instead training the chosen model structure to predict 𝑑SWE/𝑑𝑡

given 𝑧 instead of 𝑑𝑧/𝑑𝑡 given SWE, under a full and reduced set of variables. Hyperparameter testing was not

carried out for this case; further improvement could be gained by doing so.

622

623

624

Statistic 𝑀′ 𝑀′′

MAE (𝑚) 0.0231 0.0222

RMSE (𝑚) 0.0380 0.0380

NSE 0.922 0.921

Median Series Err. (%) 19.70 20.04

Pack Err. (%) 11.44 11.11

The model can predict SWE timeseries with an average RMSE of under 4 cm and with average625

NSE scores of over 0.92, with an average percentage error of about 11%, which is still improved626

relative to previously cited models. The performance of this model given performance for predicting627

𝑑𝑧/𝑑𝑡 is not surprising given the high correlation between 𝑧 and 𝑆𝑊𝐸 or between 𝑑𝑧/𝑑𝑡 and628

𝑑SWE/𝑑𝑡, though the model performs better for 𝑧 prediction than SWE prediction with regard629

to pack percentage error. However, the SWE prediction model generalizes about as well as the630

𝑧 model, with pack percentage errors ranging between 7% and 17% for SWE as opposed to 5%631

and 16% for 𝑧, but this could again likely be improved with hyperparameter exploration, and at a632

minimum offers a starting point for future studies.633

A final case study to test the limits of the model is evaluating its capability for a standalone fully634

data-driven bulk snowpack model, where two networks 𝑀𝑧 and 𝑀SWE separately trained drive635

snowpack prediction in a coupled manner, according to636

�SWE𝑖+1 = �SWE𝑖 +Δ𝑡𝑀SWE(𝑧𝑖, �SWE𝑖, 𝜑𝑖, 𝑅𝑖, 𝑣𝑖,𝑇𝑖, 𝑃𝑖), (8)

and637

𝑧𝑖+1 = 𝑧𝑖 +Δ𝑡𝑀𝑧 (𝑧𝑖, �SWE𝑖, 𝜑𝑖, 𝑅𝑖, 𝑣𝑖,𝑇𝑖, 𝑃𝑖), (9)

with adaptations as described in Eq. 7 for gaps in the data. Alternative choices could include638

training weights simultaneously under a combined loss function or pairing both outputs into one639
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model, but both introduce additional tradeoffs between 𝑧 and SWE predictions for only a minimal640

reduction in complexity. This setup would provide a fast and low-resource model for generating 𝑧,641

SWE, and bulk density and therefore all subsequently derived quantities, requiring only atmospheric642

variables and initial values 𝑧0 and SWE0 (which can be simply initialized at zero and started during643

the summer for many locations). The only change in this case to ensure respect of physical laws644

is to alter the lower threshold of 𝑀𝑧 such that the update of 𝑧 follows 𝑧𝑖+1 ≥ SWE𝑖+1 to enforce645

𝑧 ≥ 𝑆𝑊𝐸 .646

Table 11. Performance of the coupled model run as a standalone bulk hydrology model over the seven testing

sites, with full and reduced set of input features.

647

648

Statistic
With 𝑣, 𝜑 No 𝑣, 𝜑

z SWE z SWE

MAE (𝑚) 0.1149 0.0369 0.1192 0.0372

RMSE (𝑚) 0.1908 0.0635 0.1946 0.0645

NSE 0.835 0.843 0.803 0.819

Median Series Err. (%) 24.11 23.97 26.28 25.25

Pack Err. (%) 15.54 15.97 16.60 16.40

Fig. 12. Two example timeseries from the coupled prediction models with the full set of input variables, with

one better example in Alaska and a poorer example from France. The offset in 𝑧 is correlated with the offset in

𝑆𝑊𝐸 .

649

650

651

The results of this system both under the full set of predictor variables as well as under the652

reduced set (without relative humidity nor wind speed) on the seven testing sites are shown in653

Table 11 and displayed (for the full variable set) in Fig. 12. As errors are accumulating from both654
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𝑧 and SWE under this scheme, it is unsurprising to see increased average errors in both variables655

and their timeseries relative to their standalone cases, but by less than a factor of 2. Similarly, the656

generalizability of the combined model is further reduced under accumulated errors, with pack657

percentage errors from the full set of input variables ranging from 9% to 30% for 𝑧 and 9% to658

23% for SWE. However, on average model pack percentage errors are still close to previously659

cited models with 15% average snowpack error, for a fraction of the computational cost. The660

medians of every statistic were lower than their average (save for NSE, which was higher), and661

did not significantly change with the inclusion of the performance metrics on the training sites,662

implying fair performance at low overhead for over 20 sites from many different seasonal climates.663

This combined model under the full set of input features also creates density timeseries with an664

MAE of 6.7 kg m−3, a RMSE of 12.8 kg m−3, and a mean timeseries percentage error of 23%,665

again less than double the errors in the standalone case. The errors on SWE predictions are also666

closer to their standalone errors than those of 𝑧 predictions, implying the predictive capability of667

𝑀 is more reliant upon accurate SWE prediction than 𝑧, which is in line with the results of the668

feature importance seen in Table 7. As both models were trained with only the final hyperparameter669

selection for best 𝑧 prediction, further improved predictions in coupled form is likely with little more670

than hyperparameter tuning for SWE prediction or substitution with another more accurate SWE671

model. Such an investigation remains for future study, but the existing results serve to showcase672

both the utility and versatility of the presented model structure. In particular, the capability under673

reduced inputs opens avenues for real-world benefit under minimal data availability or with low674

computational resources (see section 4).675

4. Discussion676

The overarching aim of this study was to explore using a simple and versatile data-driven model677

to predict snow depth (or density) while maintaining or superseding contemporary predictive ca-678

pabilities. The rationale offered in model construction and data choice and cleaning were largely679

results-driven and focused on seasonal snowpack forecasting across locations and climates. For680

instance, choosing variables that are easily and widely measured/inferred widens model applica-681

bility as well as its ability to be benchmarked for generalizability. However, requiring complete682

atmospheric, meterological, and ground-based input features at simultaneous locations and times683
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pruned sources for training data to the daily resolution of the SNOTEL network, which was not684

quality-controlled to the extent seen for the the Kühtai and Col De Porte datasets. Less quality685

control in tandem with deliberately minimal data cleaning suggests the model was trained on noisy686

data, which likely impacts final model weights and subsequent performance for both 𝑀 and its687

linear counterpart. Availability of widespread quality-checked data at finer resolutions like those688

from Kühtai would have increased the range of extremes present for training and likely further689

improved performance across temporal resolutions. While the inclusion of reanalysis data was690

considered for this purpose, this idea was discarded due to concern 𝑀 would merely relearn re-691

analysis parameterizations rather than potentially recreate measured natural effects, informing the692

choice of solely primary source data. The requirement of flat open territory for snow pillows693

and sensor networks also implies the model was never evaluated against fractal-like terrain, with694

crevices shaded from insolation or mountainsides perpendicular to wind. The same goes for tundra695

and taiga biomes with perpetual snow cover and strong winds where drift effects are significant.696

The model’s extrapolation to such unsampled terrains is unknown, and thus the ability of 𝑀 to697

be utilized truly “globally” remains an open question. Further appraisal of the presented model698

type under future data streams in a world of growing data volume, frequency, and quality offers an699

exciting avenue for future research.700

The best configuration for timeseries generation had different hyper-parameters than that for701

direct regression on validation data. This underscores that the ability to better predict 𝑑𝑧/𝑑𝑡 in702

general does not guarantee better recreation of accumulated seasonal timeseries. This further703

supports the idea that our chosen model, loss function, and time- and location-independent input704

features, is learning something beyond the matching of magnitudes and is summarizing the effects705

of inherently universal and memoryless natural/physical processes. In particular, the model only706

began to fail when new climates presented target magnitudes that were not well-reflected in the707

training data, instead of when presented snowpacks with different input feature magnitudes from708

those in the training data. Generalizability of output magnitude is poor, as with many data-driven709

models, but, the input generalizability is a beneficial and less common result highlighting the710

benefit of seeking physical realizability of the model. This also accentuates the benefit of attaining711

widespread localized seasonal snow sensing across varying (or extreme) climates to enhance the712

predictive power of such models.713
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The model’s capabilities and its modularity for handling the addition or removal of data streams714

showcase a wide range of possible extensions. In particular, this facilitates straightforward and715

synergistic integration as a “plug-and-play” prognostic model inside physics-based hydrology suites716

that predict SWE, due to 𝑀’s sensitivity to SWE and also its respect of physical constraints and717

linear computational overhead after one-time training. The model 𝑀’s ability to run year-round718

at any input-defined spatial and temporal resolution with low computational cost can significantly719

reduce bottlenecks while still offering similar or improved accuracy to more advanced models,720

permitting predictions longer into the future or at finer resolutions. The modularity also enables721

its ability to act as a standalone predictive model wherever inputs can be measured or inferred even722

where no historical records exist. This permits real-world utility for nowcasting applications with723

economic implications, such as weekly skiing or hiking terrain predictions from weather forecasts724

for tourism or maintenance, or annual water supply forecasting in areas reliant on snowmelt.725

Beyond tuning 𝑀 for SWE prediction and testing𝑀 in a combined setting with an improved SWE726

model or entire hydrology model, other future directions of inquiry could involve the adaptation of727

𝑀 to continuous neural ODE structures and how to enforce absolute (and resolution-dependent)728

constraints on these structures or more general timestepping schemes. Opportunities for improving729

data methods include augmenting the model with additional data streams containing depth data,730

such as NOHRSC data or additional SNOTEL sites, to model snow layers or temperature profiles.731

Likewise, incorporating pressure data estimated from nearby weather stations could improve model732

output and would indirectly encode elevation-based effects into 𝑀 , and likely further improve the733

model’s ability to generalize. Alternative training methodology could include using generated734

timeseries error as the loss function and gradient-free update rules to avoid gradients of the735

recursively generated timeseries values.736

5. Conclusion737

Using a location-agnostic and physically constrained neural network within an ODE as a model738

for the rate of change of snow depth, we were able predict seasonal snow depth with a typical error739

of 9% across sites with varying climates and elevations, including some not seen during training.740

Though the model was trained with daily data, it shows an ability to perform with comparable accu-741

racy at other temporal resolutions without additional retraining of the model. The model’s structure742
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reduces computational overhead while maintaining performance compared to memory-based mod-743

els or those requiring tracking of microscale processes to reproduce macroscale observations. This744

shows an ability to better represent universal processes than other parameterizations despite its745

own data-driven nature.746

The design of the model enables straightforward integration into more complex snow models that747

require a prognostic treatment of snow depth or can be adapted to alternatively forecast variables like748

snow water content. As a standalone measure when fed with observational SWE and meterological749

data, the model can recreate seasonal timeseries with more than a 20% improvement over other750

models. It is similarly able to match contemporary performance standards even when augmented751

to simultaneously predict its own inputs, offering multiple applications for both long-term climate752

simulations as well as immediate real-world applications.753

The general structure of the model and the means of enforcing hard constraints via the model754

structure offer a simple but powerful technique for predictive modeling with utility that extends755

beyond snowpack modeling. In particular, it is easily adaptable to different predictive scenar-756

ios, which increases both the model’s usability and preserves its relevance for future or similar757

challenges.758
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APPENDIX775

Threshold Constraint Layers776

a. Defining Threshold Constraint Layers777

Since ReLu(x) = max(𝑥,0), we can re-express the minimum and maximum functions in general778

as779

max(𝑥, 𝑦) = 𝑦 +ReLu (𝑥− 𝑦) = ReLu (𝑦) −ReLu (−𝑦) +ReLu (𝑥− 𝑦) = max(𝑦, 𝑥), (A1)

780

min(𝑥, 𝑦) = 𝑦−ReLu (𝑦− 𝑥) = ReLu (𝑦) −ReLu (−𝑦) −ReLu (𝑦− 𝑥) = min(𝑦, 𝑥). (A2)

Then for any model output 𝑝 and any construction 𝑓 that serves to threshold 𝑝, the threshold781

max( 𝑓 , 𝑝) or min( 𝑓 , 𝑝) can be explicitly implemented with a single depth-3 fixed-weight layer782

containing no biases acting on input [𝑝, 𝑓 ]⊤ with ReLu activation, followed by an accumulation783
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with no activation:784

[
±1 1 −1

]
×ReLu

©­­­­«

±1 ∓1

0 1

0 −1


×

𝑝

𝑓


ª®®®®¬
= A⊤

1± ReLu©­«A⊤
2±


𝑝

𝑓

ª®¬ , (A3)

where taking the + indicates max( 𝑓 , 𝑝) and taking the − indicates min( 𝑓 , 𝑝), and the ReLu acts785

element-wise. The symmetry of the max and min functions also mean resonant structures (network786

structures outputting equivalent values but with different weights) also exist, Eq. A3 demonstrates787

one straightforward example.788

Without additional knowledge of the sign of 𝑝 or 𝑓 , both + 𝑓 and − 𝑓 (or +𝑝 and −𝑝, as the789

max and min functions are symmetric) need to be passed through the activated layer alongside the790

difference 𝑝− 𝑓 so the ReLu does not destroy any necessary information to calculate the threshold.791

However, if 𝑓 is always nonnegative (or nonpositive), the structure of the layer can be reduced, as792

there is no need to pass − 𝑓 (or + 𝑓 in the case of nonpositivity) as the ReLu will always evaluate793

to zero, so the depth of the fixed-weight layer can be reduced to two instead of three (this also794

holds if 𝑝 is nonnegative or nonpositive due to the symmetry of the max and min functions, so795

any additional knowledge of the sign of 𝑓 or 𝑝 permits a reduction in computational complexity796

by implementing the most reduced structural form). If the threshold always obeys 𝑓 ≥ 𝐶 or 𝑓 ≤ 𝐶797

for some nonzero constant 𝐶, this reduction may still occur by including a bias term alongside 𝐴2±798

and 𝐴1± (the same holds for 𝑝 ≥ 𝐶 or 𝑝 ≤ 𝐶). Fig. A1a shows the generalized structure for such a799

one-sided threshold constraint function 𝑓 on the predictive model given in 2b.800

Likewise, for a simultaneous upper bound 𝑓+ and lower bound 𝑓− on 𝑝 for any constructions801

𝑓+, 𝑓− satisfying 𝑓+ ≥ 𝑓−, we have802

max(min(𝑝, 𝑓+), 𝑓−) = ReLu( 𝑓−) −ReLu(− 𝑓−) +ReLu(𝛼), (A4)

where803

𝛼 = ReLu( 𝑓+) −ReLu(− 𝑓+) −ReLu( 𝑓−) +ReLu(− 𝑓−) −ReLu( 𝑓+− 𝑝), (A5)
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so the threshold can be explicitly implemented with a sequence of two fixed-weight layers containing804

no biases acting on input [𝑝, 𝑓+, 𝑓−]⊤, followed by an accumulation with no activation:805

[
1 1 −1

]
×ReLu
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which takes advantage of the identity ReLu(ReLu(𝑥)) = ReLu(𝑥). Like the one-sided806

threshold example, many resonant structures exist, particularly so as max(min(𝑝, 𝑓+), 𝑓−) =807

min(max(𝑝, 𝑓−), 𝑓+) when 𝑓+ ≥ 𝑓−. Similarly, knowledge of the sign (or constant bounds, if808

bias terms are included) of any of 𝑓+, 𝑓−, 𝑝 can permit a reduction in the depth of the corresponding809

layers by astute choice of weights. Fig. A1b shows the generalized structure for such a two-sided810

threshold constraint function 𝑓 outputting 𝑓+, 𝑓− on the predictive model given in 2b.811

These constraint structures are adaptable to any desirable functional constraint 𝑓 of any input819

(even those independent of the predictive model inputs) as well as the output of the predictive820

model 𝑝. Such constraints could be analytically chosen, or unknown and parameterized constraints821

can be “learned” through training on observational data, even simultaneously alongside a trained822

predictive model (for instance, a network for threshold prediction and a network for value prediction823

for entirely data-driven predictive modeling). Combinations of different functional forms are also824

permitted under this architectural choice. Another advantage over other constraint approaches,825

such as projecting outputs into a constrained space, is that the thresholds do not need to be826

constant or even known beforehand, and the model can explicitly predict boundary values instead827

of asymptotically close values.828

Figure A1 depicts the threshold constraint layers enveloping the entire predictive model from 2b,829

but for network-based predictive models, such structures could be placed inside larger networks,830
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Fig. A1. For all graphics, input data are on the left, model prediction is on the right, and the grey five-sided

structure represents the predictive network shown in Fig. 1. Specific knowledge about the function 𝑓 can

permit further reduction of these general layers by neglecting particular orange (ReLu) accumulation nodes, and

resonant structures exist given the symmetry of max,min. Black weights contain no biases, are not trained, and

equal +1 or -1 depending on the constraint. a) General structure of any one-sided constraint (a max or a min) on

the predictive structure. b) General structure of any two-sided constraint (an enforced range) on the predictive

structure.

812

813

814

815

816

817

818

layered, or stacked as part of a larger predictive model. In the case where the inputs of 𝑝 are shared831

with 𝑓 , each constraint can be implemented with only one skip connection. Constrained networks832

of this type can be equivalently expressed with Maxout networks (Goodfellow et al. 2013) or nested833

networks for a given constraint form, though maintaining a single-network form with only one skip834

connection results in faster training and a wide variety of expression in constraint forms.835
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