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We numerically and theoretically investigate the Boussinesq Eady model, where a rapidly
rotating density-stratified layer of fluid is subject to a meridional temperature gradient
in thermal wind balance with a uniform vertically sheared zonal flow. Through a suite of
numerical simulations, we show that the transport properties of the resulting turbulent flow
are governed by quasigeostrophic (QG) dynamics in the rapidly rotating strongly stratified
regime. The ‘vortex gas’ scaling predictions put forward in the context of the two-layer
QG model carry over to this fully three-dimensional system: the functional dependence of
the meridional flux on the control parameters is the same, the two adjustable parameters
entering the theory taking slightly different values. In line with the QG prediction, the
meridional heat flux is depth-independent. The vertical heat flux is such that turbulence
transports buoyancy along isopycnals, except in narrow layers near the top and bottom
boundaries, the thickness of which decreases as the diffusivities go to zero. The emergent
(re)stratification is set by a simple balance between the vertical heat flux and diffusion
along the vertical direction. Overall, this study demonstrates how the vortex-gas scaling
theory can be adapted to quantitatively predict the magnitude and vertical structure of the
meridional and vertical heat fluxes, and of the emergent stratification, without additional
fitting parameters.
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1. Introduction

The oceans and atmospheres of planets and their satellites are shallow fluid layers subject
to the combined effects of rapid global rotation and strong density stratification. Planetary
atmospheres are set into motion by differential heating in the meridional (north–south)
direction – either as a result of radiative heating by a nearby star or because of heat coming
from the deep planetary interior – while oceans are also subject to mechanical forcing by
predominantly zonal (east–west) atmospheric winds.

In both cases a meridional buoyancy gradient emerges and coexists with a vertically
sheared zonal flow as a result of thermal wind balance. This base state is unstable, however,
and turbulent motion rapidly arises as a consequence of baroclinic instability (Pedlosky
1979; Salmon 1998; Vallis 2006). The resulting ‘baroclinic’ turbulence enhances buoyancy
transport in the meridional direction, which in turn affects the equilibrated meridional
buoyancy profile, but also the local density stratification of the fluid layer. Baroclinic
turbulence strongly contributes to meridional heat transport at midlatitudes in the Earth’s
atmosphere and other planetary atmospheres, such as Jupiter’s, and plays a key role in
setting the planet’s climate (Liu & Schneider 2010; Read et al. 2020). It is also a dominant
feature of ocean currents, most notably in the Southern Ocean, where baroclinic instability
of the Antarctic Circumpolar Current (ACC) flowing around Antarctica leads to enhanced
meridional transport (Nowlin & Klinck 1986; Marshall & Radko 2003; Volkov, Fu & Lee
2010). The resulting heat and salt transport sets the stratification of the Southern Ocean
and to some extent that of all ocean basins (Wolfe & Cessi 2010; Nikurashin & Vallis 2011,
2012).

One crucial characteristic of baroclinic turbulence in the Southern Ocean is that its
horizontal integral scale is much shorter than the transverse extent of the ACC (a similar
scale separation arises in Jupiter’s atmosphere but not in the Earth’s atmosphere). The
scale separation can be leveraged to parameterize the meridional transport in the form
of a diffusive closure, where the diffusivity is inferred from a ‘local’ model consisting
of an isolated patch of fluid much smaller than the size of the ocean basin but much
larger than the integral scale of the flow (Held 1999). A hierarchy of local models can be
considered: in the simplest instances the patch of fluid is modelled as a superposition of
two vertically invariant layers of fluid stacked in the vertical direction. The equations of
motion are further simplified by considering the quasigeostrophic (QG) approximation to
the dynamics of rapidly rotating strongly stratified fluid layers. This leads to the two-layer
QG (2LQG) model, where the governing equations reduce to a conservation equation
for the potential vorticity (PV) inside each fluid layer (Phillips 1954). Even for this
canonical model, however, the transport properties of the equilibrated turbulent flow in
the moderate-to-low drag regime have been captured only recently by a scaling theory,
which we coined the ‘vortex-gas’ scaling regime and extended to the β-plane (Gallet &
Ferrari 2020, 2021).

The 2LQG model is a rather crude description of the flow, and one may wonder whether
any of these scaling laws carry over to a fully three-dimensional (3-D) model of a patch
of ocean or atmosphere experiencing weak bottom drag (Rivière, Treguier & Klein 2004).
A 3-D model also leads to key additional questions that must be addressed to design a
skilful parameterization of turbulent transport. Beyond the meridional buoyancy flux, what
is the magnitude of the vertical buoyancy flux, i.e. what is the direction of the eddy-induced
buoyancy current vector? In a model with a continuous vertical direction, can we predict
the vertical structure of the meridional and vertical buoyancy fluxes? Finally, how does
this vertical buoyancy flux feed back onto the vertical density stratification?
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In the present study we thus relax both the finite layer and the QG approximations,
i.e. we consider a 3-D patch of rapidly rotating density-stratified fluid described by the
Boussinesq equations. More precisely, we focus on the Boussinesq Eady model, where a
uniform meridional buoyancy gradient coexists with a uniform vertically sheared zonal
flow (Eady 1949). We restrict attention to the large-Richardson-number regime (buoyancy
frequency much greater than the vertical shear) where perturbations amplify through a
‘geostrophic instability’ mechanism, see Stone (1971). The departures from the base state
thus rapidly evolve into 3-D turbulence that we solve using periodic boundary conditions
in the horizontal directions. This Boussinesq Eady model is introduced in § 2. We present
a suite of numerical simulations of the Eady model in § 3. We show that the numerical
results are consistent with QG dynamics. We then recall the prediction of the vortex-gas
scaling theory for the magnitude of meridional transport and we validate this prediction
against the numerical data. In § 4, we extend these predictions to the vertical buoyancy
flux and emergent vertical stratification, finding good agreement with the numerical
data. In § 5, we turn to the vertical structure of these quantities, which we predict to
be depth-invariant within the low-diffusivity QG framework. Based on the Boussinesq
data, we show that they are indeed all depth-independent in the bulk of the layer within
the low-diffusivity QG regime, but that extremely low diffusivities are needed for that
depth independence to hold near the top and bottom boundaries. The turbulent kinetic
energy (TKE) profile gradually becomes depth-independent as one enters the low-friction
vortex-gas regime, in line with a barotropization of the flow. We summarize the results and
conclude in § 6.

2. The Boussinesq Eady model with bottom drag

2.1. Base state
We consider the Boussinesq equations for a rotating density-stratified layer of fluid inside a
3-D domain (x, y, z) ∈ [0, L] × [0, L] × [0,H], with gravity and rotation along the vertical
axis z,

∂tu + (u · ∇)u + f ez × u = −∇p + αgθez + ν⊥�⊥u + νz∂zzu, (2.1)

∂tθ + u · ∇θ = νb;⊥�⊥θ + νb;z∂zzθ, (2.2)

where u(x, y, z, t) and θ(x, y, z, t) denote the velocity and (potential) temperature fields,
p(x, y, z, t) is the kinematic pressure, α denotes the thermal expansion coefficient, g
denotes gravity. The problem having very different characteristic length scales in the
horizontal and vertical directions, we use two different viscosities νz and ν⊥ for the vertical
and horizontal derivatives arising in the viscous term (i.e. for the ∂zz and �⊥ = ∂xx + ∂yy
terms, respectively). Similarly, we use two different thermal diffusivities for horizontal
(νb;⊥) and vertical (νb;z) thermal diffusion. For simplicity, temperature θ is considered to
be the only stratifying agent in the equations above.

We focus on a steady base state with a vertically sheared zonal flow u = Sz ex in
thermal-wind balance with a temperature gradient along the meridional direction y.
Substitution into the equations above leads to the following base state:

u = Szex, αgθ( y, z) = −fSy + N2z. (2.3a,b)

The base state is sketched in figure 1. The meridional temperature gradient in (2.3b) is
directly proportional to the vertical shear S as a result of thermal wind balance, and we
have included a uniform background vertical temperature gradient (uniform background
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Sz ex

x

y

z

0

Linear friction κ

H
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Background buoyancy:

−f Sy + N2z

f
2

ez

Figure 1. Base state of the Eady set-up: a plane layer of density-stratified fluid is subject to a meridional
buoyancy gradient, in a frame rotating at a rate f /2 around the vertical axis. A uniformly sheared flow in the
zonal direction x coexists with the meridional buoyancy gradient as a result of thermal wind balance.

buoyancy stratification N2). In the following, we thus consider base states both with
and without background vertical stratification (N /= 0 and N = 0, respectively). Strictly
speaking, the base state (2.3a,b) is a solution to (2.1)–(2.2) only if supplemented with
the right boundary conditions. Firstly, we neglect the tiny Ekman layer connecting the
shear flow (2.3a) to the stress-free upper boundary. Secondly, a weak vertical heat flux
needs to be imposed at the boundaries to maintain a base state with N /= 0, the magnitude
of which vanishes as the vertical diffusivities tend to zero. We validate this approach a
posteriori by showing some solutions with N = 0. For these solutions a strong density
stratification compatible with the top and bottom insulating boundary conditions emerges,
and the resulting equilibrated state follows the same scaling behaviour as solutions with
strong imposed background stratification N /= 0. In line with the theoretical predictions
to come, the emergent stratification is uniform, which justifies the compatibility between
simulations performed with and without an imposed uniform background stratification N2.

2.2. Departure from the base state: governing equations
Consider arbitrary departures from the base state,

u(x, y, z, t) = Sz ex + v(x, y, z, t), (2.4)

αgθ(x, y, z, t) = −fSy + N2z + b(x, y, z, t), (2.5)

where b denotes the buoyancy departure. The velocity departure v = (u, v,w) is
divergence-free in the Boussinesq framework, ∇ · v = 0. Substituting (2.4)–(2.5) into
(2.1)–(2.2) leads to the evolution equations for v and b:

∂tv + Sz∂xv + wSex + (v · ∇)v + f ez × v = −∇p + b ez + ν⊥�⊥v + νz∂zzv, (2.6)

∂tb − fSv + N2w + Sz∂xb + v · ∇b = νb;⊥�⊥b + νb;z∂zzb. (2.7)

We consider periodic boundary conditions for the departure fields v and b in the horizontal
directions. The top and bottom boundaries are no-flux,

∂zb|z=0 = ∂zb|z=H = 0, (2.8)

and v satisfies free-slip boundary conditions at the top,

w|z=H = 0, ∂zv⊥|z=H = 0, (2.9a,b)
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where v⊥ denotes the horizontal components of v. Strictly speaking, the bottom boundary
condition should be no-slip, v|z=0 = 0. Such a no-slip boundary condition induces strong
friction and pumping associated with the bottom Ekman boundary layer, of typical
thickness

√
νz/f . However, the picture of a laminar Ekman layer acting on a perfectly

flat ocean bottom is probably a very naïve representation of the turbulent boundary layer
near the rough ocean floor. We thus turn to a bottom boundary condition that allows us to
vary the magnitude of bottom friction independently of the vertical viscosity. We replace
the no-slip bottom boundary condition by the following frictional boundary condition:

w|z=0 = 0, ∂zv⊥|z=0 = κH
νz

v⊥|z=0. (2.10a,b)

This boundary condition corresponds to a linear drag law, somewhat similar to but weaker
than pure Ekman friction. The strength of bottom friction can be tuned through the value of
the friction coefficient κ (not to be confused with the buoyancy diffusivities νb;⊥ and νb;z).
As compared with a standard no-slip boundary condition, (2.10a,b) allows us to study the
regime of weak bottom drag while keeping vertical viscosity values compatible with direct
numerical simulation. The boundary condition (2.10a,b) reduces to a standard no-slip
boundary condition for κ → ∞, while it reduces to a stress-free boundary condition for
κ → 0. For arbitrary κ , the flow near the bottom of the fluid domain resembles a truncated
Ekman spiral, with reduced shear and reduced pumping as compared with the standard
Ekman boundary layer over a no-slip boundary. In Appendix A, we compute the total
damping and pumping induced by the boundary condition (2.10a,b) on the bulk flow.

2.3. Non-dimensionalization
We non-dimensionalize the equations using the length scale H and the time scale f −1:

(x	, y	, z	) = (x, y, z)/H, (u	, v	,w	) = (u, v,w)/( fH), t	 = ft, (2.11a–c)

b	 = b/( f 2H), p	 = p/( f 2H2), Ei = νi/( fH2), κ	 = κ/f . (2.12a–d)

Dropping the 	 symbols in the following to alleviate notations, the dimensionless
governing equations are

∂tv + Ro z∂xv + Ro wex + (v · ∇)v + ez × v = −∇p + b ez + E⊥�⊥v + Ez∂zzv,
(2.13)

∂tb − Ro v +
(

N
f

)2

w + Ro z∂xb + v · ∇b = Eb;⊥�⊥b + Eb;z∂zzb, (2.14)

where the Rossby number is defined as Ro = S/f . The dimensionless boundary conditions
are

w|z=1 = 0, ∂zv⊥|z=1 = 0, (2.15a,b)

w|z=0 = 0, ∂zv⊥|z=0 = κ

Ez
v⊥|z=0, (2.16a,b)

∂zb|z=0 = ∂zb|z=1 = 0. (2.17)

2.4. Numerical implementation
We wish to characterize the buoyancy transport achieved by statistically steady solutions
to (2.13)–(2.14) with the boundary conditions (2.15a,b) through (2.17) (see Bachman &
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Fox-Kemper (2013) for a study of the spin-down problem). Denoting as 〈 · 〉 a time and
volume average, we will consider the time- and volume-averaged meridional and vertical
buoyancy fluxes, 〈vb〉 and 〈wb〉, respectively. We also consider the vertical profiles of
the meridional and vertical buoyancy fluxes, vb(z) and wb(z), where the overbar denotes
a horizontal area average together with a time average. Finally, a quantity of interest
is the emergent stratification b̄(z) that arises in the equilibrated state. The total vertical
buoyancy stratification is (N/f )2z + b̄(z), and, assuming that the emergent stratification is
approximately uniform, we define the Rossby deformation radius λ as

λ =
√(

N
f

)2

+ b̄(1)− b̄(0), (2.18)

where λ is non-dimensionalized with H.
We have performed a suite of numerical simulations of (2.13)–(2.14) using Coral, a

pseudospectral, scalable, time-stepping solver for differential equations (Miquel 2021). In
Coral, the top and bottom boundary conditions are imposed through basis recombination.
The variables are expanded on bases of functions obtained as tensor products of Fourier
modes along the horizontal and suitable linear combinations of Chebyshev polynomials,
each of which obeys the boundary conditions along z. The divergence-free constraint
is readily implemented in Coral by introducing the standard toroidal and poloidal
velocity potentials ψ(x, y, z) and φ(x, y, z), respectively. The frictional bottom boundary
condition is dealt with by defining modified velocity potentials ψ̃ and φ̃ as ψ(x, y, z) =
Pψ(z)ψ̃(x, y, z) and φ(x, y, z) = Pφ(z)φ̃(x, y, z), where Pψ(z) and Pφ(z) are carefully
chosen quadratic polynomials, the coefficients of which depend on the drag coefficient. In
particular, these polynomials are tailored so that imposing the Robin boundary conditions
(2.16a,b) on the velocity field amounts to imposing standard stress-free type boundary
conditions for the modified potentials: ∂zψ̃ = φ̃ = ∂zzφ̃ = 0. We can thus solve for ψ̃
and φ̃ using standard Galerkin basis recombination. The code has been benchmarked
by careful comparison with results from linear stability analysis; checks that the various
power integrals are exactly satisfied in the nonlinear regime, and comparison of the overall
buoyancy transport with a run of the same problem performed with the Dedalus solver
(Burns et al. 2020) have also been done. The numerical runs are initialized with either
low-amplitude noise or a checkpoint from a previous simulation. We average the relevant
quantities over the statistically steady regime, and make sure that the statistics are correctly
converged by comparing with averages performed over the first half of the statistically
steady signal only.

3. Meridional buoyancy transport

3.1. The low-diffusivity regime
We focus on the regime where the horizontal extent of the domain is large compared with
the energy-containing scale and the mixing length of the flow (estimated as the ratio of
root mean square horizontal buoyancy fluctuations divided by the meridional buoyancy
gradient, see e.g. Thompson & Young (2006)). Through variations of the domain size, we
checked that the transport properties of the flow are then independent of the horizontal
domain size (for brevity, we do not report these validation runs in the tables below).
The diffusivities are chosen to be equal for momentum and buoyancy, i.e. Eb;⊥ = E⊥ and
Eb;z = Ez in all of the numerical runs. This corresponds to setting the Prandtl number to
unity, an appropriate choice in the present context where the viscosities and diffusivities
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represent mixing by small-scale turbulence, and not molecular processes. The horizontal
diffusivities are small enough not to affect the transport properties of the equilibrated flow.
The role of the vertical diffusivities is more subtle: anticipating the results in §§ 3 and
4, we choose small enough vertical diffusivities for the transport properties of the flow
to be well-described by bulk diffusivity-free QG dynamics with bottom friction. In that
regime, however, the emergent stratification depends on the vertical buoyancy diffusivity,
as described in § 4.2. Table 1 lists the various control parameters for the numerical runs
considered in the present study: we vary the background stratification, the Rossby number,
the diffusivities and the friction coefficient.

The qualitative aspect of the equilibrated flow is illustrated in figure 2, where we
show a 3-D rendering of the total buoyancy field together with horizontal slices of the
dimensionless vertical vorticity ζ at mid-depth and at the top surface. We observe that the
flow remains strongly stratified in the equilibrated state, with weak isopycnal slopes in the
bulk of the fluid domain. Figure 2(a–c) correspond to a run that is marginally QG and
has very low dimensionless drag. The bulk vertical vorticity exhibits a relatively dilute gas
of vortices, although there is some asymmetry between cyclones and anticyclones. This
asymmetry probably stems from the sharp non-QG frontal structures that develop at the
surface (Hoskins & Bretherton 1971; Klein et al. 2008; Ragone & Badin 2016; Siegelman
et al. 2020), see figure 2(c). We will see in the following that the transport properties
of this flow are correctly described by QG theory despite the slight cyclone/anticyclone
asymmetry of the interior flow. Figure 2(d,e) illustrate a run in the strongly QG regime
with moderately low drag. The vortex gas is less dilute as a result of the larger drag. The
QG cyclone–anticyclone symmetry is well-satisfied both at mid-depth (figure 2d) and in
the surface quasigeostrophic (SQG) fronts visible in figure 2(e).

In figure 3, we show the overall meridional buoyancy flux 〈vb〉 as a function of the
friction coefficient κ . The buoyancy flux varies over more than four orders of magnitude
over the entire data set. Meridional transport increases as the friction coefficient decreases
(for otherwise constant parameters), and it decreases rapidly with decreasing Rossby
number.

3.2. Bulk QG dynamics: further reducing the number of control parameters
The qualitative features of the equilibrated flows in figure 2 point to QG dynamics. One
can derive the QG approximation to the Boussinesq Eady system following the standard
procedure reviewed in Appendix B (see also Salmon 1998; Vallis 2006). Decompose the
pressure field into a time and horizontal mean p̄(z) plus fluctuations p̃(x, y, z, t):

p(x, y, z, t) = p̄(z)+ p̃(x, y, z, t), with ¯̃p = 0. (3.1)

Notice that the horizontal and time derivatives of p and p̃ are equal, so that p and p̃ can be
used interchangeably in many (but not all) of the expressions to come. Assuming that the
emergent stratification is approximately uniform and neglecting the diffusive terms in the
bulk of the flow, the PV conservation equation reads (see Appendix B)

∂tq + J(p̃, q)+ Ro z ∂xq = 0, (3.2)

where the PV is

q = ∇2
⊥p̃ + ∂zzp̃

λ2 . (3.3)
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Figure 2. Equilibrated baroclinic turbulence illustrated with snapshots from (a–c) run 21 (low drag) and (d,e
run 3 (moderate drag). (a) A 3-D rendering of the total buoyancy field. Notice the very different vertical
and horizontal scales, and thus the very weak isopycnal slopes. (b) The vertical vorticity at mid-depth shows
coherent vortices, with slight cyclone/anticyclone asymmetry in this marginally QG run. (c) The surface
vertical vorticity exhibits sharp frontal structures where relative vorticity greatly exceeds planetary vorticity.
Panels (d,e) are the same as panels (b,c), but for larger dimensionless drag κ∗ in a strongly QG regime. The
vorticity at mid-depth shows a less dilute vortex gas than in panel (b). The QG cyclone/anticyclone symmetry
is well satisfied, including in the sharp surface QG (SQG) frontal structures visible in panel (e).
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Figure 3. Raw meridional buoyancy flux as a function of the friction coefficient for the 22 numerical runs.
The symbols correspond to different values of the Rossby number, while colour codes correspond to the
background stratification. The meridional flux increases with decreasing friction coefficient for otherwise
constant parameters.

The boundary conditions are the buoyancy equation written at the boundaries,
remembering the hydrostatic relation b = ∂zp. At the top free-surface one obtains

∂tzp̃|1 − Ro ∂xp̃|1 + Ro ∂xzp̃|1 + J(p̃|1, ∂zp̃|1) = 0. (3.4)

The second boundary condition stems from the buoyancy equation written just above the
partial Ekman layer connecting the bulk flow to the frictional bottom boundary condition
(a height denoted as z = 0+),

∂tzp̃|0+ − Ro ∂xp̃|0+ + J(p̃|0+, ∂zp̃|0+)+ λ2w|0+ = 0, (3.5)

where w|0+ denotes the vertical pumping velocity induced by the partial Ekman layer. As
shown in Appendix A, this pumping velocity takes the form

w|0+ = κeff ζ |0+ = κeff�⊥p̃|0+, (3.6)

where the effective friction coefficient acting on the interior flow is

κeff =
√

2Ez

1 +
√

2Ez

κ
+ Ez

κ2

×
(

1
2

+
√

Ez

2
1
κ

)
, (3.7)

both κ and κeff being non-dimensionalized with f . Expression (3.7) reduces to the standard
Ekman friction coefficient in the no-slip limit κ → ∞ (Pedlosky 1979). The buoyancy
equation at z = 0+ finally reads

∂tzp̃|0+ − Ro ∂xp̃|0+ + J(p̃|0+, ∂zp̃|0+)+ λ2κeff�⊥p̃|0+ = 0. (3.8)

The QG dynamics is governed by the conservation equation (3.2) for the bulk PV (3.3),
with the top and bottom boundary conditions (3.4) and (3.8). The fluid communicates
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Transport and stratification in the equilibrated Eady model

in the vertical direction through slight vertical displacements of the isopycnals, which
induce modifications in vertical vorticity ζ = �⊥p through the conservation of PV (for
the specific case of a cylindrical fluid column contained between two isopycnals, this
process can be understood as the conservation of angular momentum as the column
gets compressed or stretched). Diffusion plays no role in this process, the consequence
being that κ and Ez enter the QG dynamics only through the effective friction coefficient
κeff associated with pumping in the bottom (partial) Ekman layer. The number of
dimensionless parameters relevant to the QG regime can be further reduced through the
introduction of the QG scalings,

t = λ

Ro
T, x = λX, y = λY, p̃ = Roλ P(X, Y, z, T), q = Ro

λ
Q(X, Y, z, T).

(3.9a–e)
Through this change of variables the QG equations become

∂TQ + JX (P,Q)+ z∂XQ = 0, (3.10)

Q = �X ,⊥P + ∂zzP, (3.11)

∂TzP|1 − ∂XP|1 + ∂XzP|1 + JX (P|1, ∂zP|1) = 0, (3.12)

∂TzP|0+ − ∂XP|0+ + JX (P|0+, ∂zP|0+)+ κeff λ

Ro
�X ,⊥P|0+ = 0, (3.13)

where JX ( f , g) = ∂Xf ∂Yg − ∂Yf ∂Xg and�X ,⊥ = ∂XX + ∂YY . An instructive feature of this
set of equations is that it involves a single control parameter,

κ∗ = κeff λ

Ro
, (3.14)

which is the Boussinesq equivalent of the relevant dimensionless drag coefficient in the
QG framework (Thompson & Young 2006; Gallet & Ferrari 2020). The equilibrated
solutions to the set of equations (3.10)–(3.13) are characterized by a meridional buoyancy
transport D∗ = 〈∂XP∂zP〉 = 〈vb〉 /(Ro2λ) that depends only on κ∗. We conclude that

D∗ ≡ 〈vb〉
Ro2λ

= F
(
κ∗ = κeff λ

Ro

)
, (3.15)

where the unknown function F denotes the dependence of the QG buoyancy eddy
diffusivity D∗ on the QG dimensionless drag κ∗. As discussed in Thompson & Young
(2006) and Gallet & Ferrari (2020), the 2LQG equivalent of D∗ readily quantifies the
ratio of the meridional buoyancy flux over the meridional buoyancy gradient, hence the
name ‘diffusivity’. Indeed, while the change of variables above provides a rigorous way to
identify D∗ and κ∗ as the ‘order’ and ‘control’ parameters of the QG regime, the form of
D∗ and κ∗ could have been guessed from studies of the strongly idealized 2LQG model:
as shown in Thompson & Young (2006), the 2LQG model on the f -plane reduces to
the study of D∗ versus κ∗, where D∗ is the meridional flux divided by the product of
the deformation radius with the squared shearing velocity, while κ∗ is the bottom drag
coefficient multiplied by the deformation radius and divided by the shearing velocity.

Equation (3.15) suggests a quantitative way to assess whether meridional buoyancy
transport is governed by QG dynamics in the present simulations of the Boussinesq
system: in figure 4, we plot D∗ as a function of κ∗ for the entire dataset. This representation
leads to a collapse onto a master curve of the entire data set, which includes various
values of the Rossby number, background stratification and vertical Ekman numbers.
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10–1 100

100

D∗
101

102

κ∗
Figure 4. Dimensionless eddy-induced diffusivity as a function of the dimensionless effective friction
coefficient, using the QG non-dimensionalization. The entire data set falls onto a master curve, indicating
that QG dynamics governs the overall buoyancy transport. Same symbols and colours as in figure 3. The thick
vertical dashed lines indicate the predicted values of κ∗ according to (4.9) for the runs without background
stratification (black circles). The predicted values of κ∗ agree with the direct numerical simulation ones within
5 %. Black crosses are the solutions to the QG system. The solid line is the vortex-gas prediction (3.16) with
c1 = 0.32 and c2 = 0.61.

This confirms the validity of the QG scalings for bulk transport in the present numerical
data, despite the emergence of potentially non-QG frontal dynamics near the boundaries.

We further compare the results of the Boussinesq system with QG theory by solving
the QG Eady problem explicitly. A trivial solution to the QG PV conservation equation
(3.10) is Q = 0. In Appendix B, we recall how this constraint leads to an inversion relation
providing P|1 and P|0+ in terms of ∂zP|1 and ∂zP|0+ at each time step. Solving the 3-D
QG problem then reduces to solving the coupled equations (3.12) and (3.13) for the
two-dimensional (2-D) fields ∂zP|1 and ∂zP|0+ , using the inversion relation to infer P|1
and P|0+ at each time step. The approach is very similar to SQG (Blumen 1978; Held et al.
1995; Callies et al. 2016; Lapeyre 2017), the difference being that there are two horizontal
boundaries in the present system (at top and bottom), as opposed to a single horizontal
boundary in the standard SQG system. The second boundary crucially allows for the
emergence of depth-invariant barotropic eddies in the present system. The effectively 2-D
equations are solved on a graphics processing unit in a large enough domain for finite-size
effects to be negligible. To damp the small-scale filaments, we also add hyperviscous
terms −μ�4

X ,⊥∂zP|1 and −μ�4
X ,⊥∂zP|0+ to the right-hand sides of (3.12) and (3.13),

respectively, where the dimensionless hyperdiffusivity μ is chosen small enough to not
affect the meridional heat flux in the equilibrated state. The resulting data points are
plotted using crosses in figure 4. They agree very well with the 3-D Boussinesq data,
indicating that PV vanishes in the interior of the 3-D domain as a result of the dissipative
terms, with negligible PV injection by frontal structures at the boundaries (in contrast
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Transport and stratification in the equilibrated Eady model

with zonally invariant 2-D primitive-equation models, see Nakamura & Held (1989) and
Garner, Nakamura & Held (1992)).

To summarize, we have established that meridional transport in the equilibrated
Boussinesq Eady system is governed by QG dynamics, as illustrated by the collapse of the
Boussinesq data in the representation of figure 4 and their good agreement with solutions
of the QG system. Developing a theory for the magnitude of the meridional transport in
the equilibrated Eady problem then reduces to the determination of the function F in the
scaling relation (3.15).

3.3. Vortex-gas scaling theory
We recently introduced such a scaling theory, coined the vortex-gas scaling regime (Gallet
& Ferrari 2020), within the framework of the 2LQG model. The central idea is that the
barotropic flow consists of a dilute gas of isolated vortices wandering around through
mutual advection (Carnevale et al. 1991; Thompson & Young 2006). The vortex cores
are small compared with the intervortex distance, with a radius comparable to the Rossby
deformation radius. Buoyancy fluctuations arise through the distortion of the background
meridional gradient by the vortical flow. Focussing on a single barotropic vortex dipole
shows that the mixing length is comparable to the intervortex distance, while the
diffusivity is given by the product of the intervortex distance with the velocity at which the
vortex cores move. Two energetic arguments complete the scaling theory. First, a typical
velocity scale is estimated by equating the potential energy drop with the final kinetic
energy as a fluid column travels over one mixing length (seen as the mean-free path of the
turbulent fluid motion). This ‘slantwise free-fall’ argument yields the typical velocity of
a fluid column located between two vortices, which is also the velocity scale at which
the vortex cores move. Second, at equilibrium the energy released through baroclinic
instability must be balanced by frictional dissipation. Significantly larger velocities arise
at the immediate periphery of the vortex cores, where fluid particles circle rapidly without
transporting much buoyancy. These large velocities are associated with large frictional
dissipation, with important consequences for the energy power integral, which is the last
scaling relation of the theory. This line of arguments provides a theoretical expression for
the function F in (3.15). Specifically, for linear bottom friction we obtain

D∗ = c1 exp
(

c2

κ∗

)
, (3.16)

where c1 and c2 are adjustable parameters that may depend on details of the specific model.
Based on low-drag simulations of the 2LQG model with equal layer depths, we estimated
c(2LQG)

1 � 2.0 and c(2LQG)
2 � 0.72 (Gallet & Ferrari 2021). For the present Boussinesq

Eady data, we show in figure 4 that the vortex-gas prediction (3.16) accurately captures
the master curve, with c1 = 0.32 and c2 = 0.61. This indicates that the physical intuition
gathered from the 2LQG model carries over to the fully 3-D Eady model.

4. Vertical transport and emergent stratification

As compared with the 2LQG system, the Eady model includes a continuous vertical
direction. The eddy-induced buoyancy current is a vector with both a meridional and
a vertical component. The vertical buoyancy flux is crucial because it plays a central
role in setting the emergent vertical stratification. In the following we propose simple
scaling arguments to quantitatively predict the vertical buoyancy flux before computing

948 A31-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

50
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.501


B. Gallet, B. Miquel, G. Hadjerci, K.J. Burns, G.R. Flierl and R. Ferrari

the emergent stratification. We will show that the latter can be negligible, comparable or
much greater than the background stratification depending on the parameter regime. In
particular, we will show that restratification can be strong enough to induce QG dynamics
even in the absence of an imposed background vertical stratification.

4.1. Bulk eddy transport is along isopycnals
In a similar fashion to (3.1), decompose the buoyancy field into a time and horizontal mean
b̄(z) plus fluctuations b̃(x, y, z, t):

b(x, y, z, t) = b̄(z)+ b̃(x, y, z, t), with ¯̃b = 0. (4.1)

Upon multiplying the buoyancy equation (2.14) with b before averaging temporally and
horizontally, assuming that the fluctuations are much weaker than the mean, b̃  b̄, one
obtains

− Ro vb +
[(

N
f

)2

+ ∂zb̄

]
wb � −Eb;⊥|∇⊥b|2 + Eb;zb∂zzb. (4.2)

If the diffusive terms on the right-hand side are negligible, we recover the standard
conclusion that the eddy-induced buoyancy current is along isopycnals (Gent &
Mcwilliams 1990; Young 2012). In terms of the overall magnitude of the vertical buoyancy
flux, this leads to the simple relation,

〈wb〉 � Ro
λ2 〈vb〉 , (4.3)

the slope of the isopycnals being Ro/λ2. In figure 5 we plot the ratio of the left-hand side
over the right-hand side of (4.3), denoted as r, for solutions of the Boussinesq system. This
ratio is indeed approximately constant at low drag, with a value r � 0.85 close to unity,
the slight departure from one being due to the small diffusive contributions in (4.2). The
ratio r approaches unity if the diffusive terms are small enough in a regime where the
assumptions of QG are well satisfied. Solutions to the QG system – (3.12)–(3.13) together
with inversion relations (B17)–(B18) – satisfy r = 1 exactly. Overall, the combination of
the vortex-gas scaling prediction with the Gent–McWilliams argument leads to a good
theoretical prediction for the vertical buoyancy flux,

〈wb〉 = c1r
Ro3

λ
exp

(
c2

κ∗

)
� c1

Ro3

λ
exp

(
c2

κ∗

)
, (4.4)

as illustrated in figure 5.

4.2. Strength of the emergent stratification
One then estimates the emergent stratification from the vertical buoyancy flux through the
potential energy evolution equation. Multiplying the buoyancy equation (2.14) by z before
averaging over space and time yields, after using w̄ = 0 and performing some integrations
by parts using the boundary conditions,

Ro
∫ 1

0
zv̄ dz + 〈wb〉 = Eb;z

[
b̄(1)− b̄(0)

]
. (4.5)

We wish to show that the term involving the mean meridional flow v̄(z) is negligible as
compared with the vertical buoyancy flux on the left-hand side. This mean meridional
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Figure 5. Inset: ratio r between the two sides of the approximate relation (4.3). This ratio is always close to
unity, with a typical value r � 0.85 over the entire data set. This ratio approaches unity as the diffusivities are
lowered, indicating along-isopycnal transport. Main figure: dimensionless vertical buoyancy flux as a function
of the dimensionless effective friction coefficient, both being non-dimensionalized following the QG scalings.
Combining the vortex-gas theory with pure along-isopycnal transport leads to the prediction on the right-hand
side of (4.4), shown as a solid line. Same symbols and colours as in figure 3.

velocity corresponds to an ageostrophic flow, because a mean zonal buoyancy gradient
maintaining v̄(z) through thermal wind balance would be incompatible with the periodic
boundary conditions. The profile v̄(z) can be estimated by time- and area-averaging the
zonal component of the momentum equation (2.6),

v̄ = ∂zwu − Ez∂zzū. (4.6)

The second term on the right-hand side is negligible in the bulk of the domain because
Ez  1. The first term on the right-hand side involves wu. It leads to a contribution
−Ro 〈wu〉 to the left-hand side of (4.5), to be compared with the second term, 〈wb〉.
A crude estimate of the ratio of these two contributions is Ro

〈
u2〉1/2

/
〈
b2〉1/2, which using

thermal-wind balance for a flow of horizontal scale λ is of order Ro/λ  1. This simple
estimate is a first indication that the v̄ term in (4.5) is negligible as compared with the
vertical buoyancy flux.

We stress the fact, however, that 〈wu〉 and v̄ are even smaller than the crude estimate
above. Indeed, to lowest order the magnitude of 〈wu〉 can be estimated using QG theory,
the diagnostic vertical velocity being inferred from (B7). One can then leverage the
cyclone–anticyclone symmetry of the QG system to show that the resulting wu vanishes,
as explained in Appendix B.3. In other words, while QG dynamics induces a non-zero
vertical buoyancy flux wb in the bulk of the domain, it leads to a vanishing vertical flux
of zonal momentum wu for symmetry reasons. Non-zero wu in the bulk may only arise at
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next order in the QG expansion, where cyclone–anticyclone symmetry is broken (Muraki,
Snyder & Rotunno 1999; Hakim, Snyder & Muraki 2002; Gallet et al. 2014). We conclude
that 〈wu〉 is smaller than the estimate of the previous paragraph by (at least) a factor
corresponding to the isopycnal slope, Ro/λ2  1. The v̄ term is thus fully negligible as
compared with 〈wb〉 in (4.5).

Having shown that the dominant balance in (4.5) is between the vertical buoyancy flux
and the diffusive flux associated with the emergent stratification, we obtain the following
expression for the emergent stratification:

b̄(1)− b̄(0) � 〈wb〉
Eb;z

. (4.7)

One should notice that the vertical buoyancy diffusivity comes back into play through
the coefficient Eb;z in the denominator. While the vertical momentum diffusivity (the
viscosity coefficient) affects the scaling behaviour of the system only marginally, through
a modification of the effective friction coefficient (3.7), the vertical buoyancy diffusivity
greatly impacts the emergent stratification (4.7). The transport properties of the system are
independent of the vertical buoyancy diffusivity only in the regime where the emergent
stratification (4.7) is negligible as compared with the imposed background stratification.
Otherwise, changes in Eb;z induce changes in the emergent stratification (4.7) and thus in
the Rossby deformation radius λ, the consequence being that the transport properties of the
equilibrated state are shifted following the QG master curves in figures 4 and 5. From (4.7),
we can estimate the emergent stratification directly in terms of the control parameters of
the problem. While this can be done for an arbitrary background stratification, we focus on
two limiting situations: the case without imposed background stratification; and the case
where the emergent stratification is negligible as compared with the imposed background
one.

In the absence of imposed background stratification, where b̄(1)− b̄(0) = λ2, we insert
expression (4.4) for the vertical flux into (4.7), before writing the resulting relation as(

c2

κ∗

)3

ec2/κ∗ = c3
2

c1
× Eb;z
κ3

eff
. (4.8)

We invert this relation to obtain c2/κ∗, which leads to the following expression for the
emergent Rossby deformation radius (emergent stratification):

λ = c2Ro

3κeff W
[

c2

3c1/3
1

× E1/3
b;z
κeff

] , that is κ∗ = c2

3W
[

c2

3c1/3
1

× E1/3
b;z
κeff

] , (4.9)

where W denotes the Lambert function. These equations relate emergent quantities (on
the left-hand side) to control parameters only (on the right-hand side). The first expression
in (4.9) provides the emergent stratification, while the second one readily gives the
dimensionless friction κ∗ arising in the QG framework (the abscissa in figures 4 and 5).
We have performed two numerical runs without background stratification to validate these
predictions. In figure 4, we show that the resulting meridional flux falls onto the master
curve, at an abscissa given by the theoretical expression (4.9) within 5 % accuracy.

We now consider the case of a non-zero imposed background stratification (N/f )2.
We wish to determine when the emergent stratification is negligible as compared with
the imposed one. To wit, we estimate the emergent stratification by inserting into (4.7)
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N
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Right-hand side/Eb;z

Figure 6. Ratio of the emergent stratification, b̄(1)− b̄(0), over the background one, (N/f )2, versus the ratio
of the right-hand side of (4.10) over Eb;z. In agreement with the criterion (4.10), the emergent stratification is
negligible as compared with the background one when the abscissa is much less than unity. In this regime the
abscissa readily provides the theoretical prediction for the emergent stratification divided by the background
one, and indeed the data points fall onto the diagonal. The emergent stratification becomes comparable to the
background one as the abscissa approaches unity. Same symbols and colours as in figure 3.

expression (4.4) for the vertical flux, in which we replace λ with N/f . Demanding that
this emergent stratification be negligible as compared with the imposed one, (N/f )2, then
amounts to satisfying the inequality,

Eb;z � c1
Ro3

(N/f )3
exp

(
c2Ro
κeff N/f

)
. (4.10)

The criterion (4.10) is expressed in terms of the control parameters of the system only.
It allows one to assess a priori whether or not the emergent stratification is negligible as
compared with the background one, as illustrated in figure 6. When the inequality (4.10) is
satisfied, the emergent stratification is negligible and the meridional and vertical buoyancy
fluxes are readily obtained by replacing λ with (N/f ) in expressions (3.16) and (4.4).

To summarize, combining the vortex-gas scaling theory with both the along-isopycnal-
transport argument and a simple advective–diffusive buoyancy-flux balance along the
vertical direction, we obtain theoretical expressions for the meridional buoyancy flux, the
vertical buoyancy flux and the emergent stratification in terms of the control parameters of
the problem.

5. Vertical structure

Having established that the 2LQG model has the ability to predict the functional
dependence of meridional transport in the Eady problem, we turn to the vertical structure
of the buoyancy fluxes, a question that can be addressed only by going beyond 2LQG. An
accurate description of the vertical structure of the transport tensor is crucial step in the
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Figure 7. (a–d) Profiles of the scaled meridional and vertical buoyancy fluxes arising in (4.2), and profiles
of horizontal TKE, for (a,b) run 21 (κ∗ = 0.139) and (c,d) run3 (κ∗ = 0.595). For both runs the meridional
flux is approximately depth-independent, in agreement with the QG prediction. Panels (a,b) correspond to
the low-drag regime, with moderately low Ekman numbers. The vertical flux retains some depth-dependence
near the boundaries. By contrast, for the very low-diffusivity run of the panels (c,d) the vertical buoyancy
flux is approximately depth-invariant. The TKE profiles show the gradual barotropization of the flow as we go
from (c,d) moderately low drag to (a,b) very low drag. (e) The diapycnal mixing associated with the diffusive
terms in (4.2) decreases as the diffusivities are lowered. Here both the vertical and horizontal diffusivities are
simultaneously decreased by factors of 2 and factors of 4, the lowest values (thick black curve) corresponding
to run 3 (c,d).

development of a parameterization of baroclinic turbulence to be used in a fully 3-D global
ocean model.

5.1. Depth-invariant meridional flux
The QG framework readily provides a prediction for the vertical structure of the meridional
buoyancy flux. According to (3.2), the PV (3.3) is a material invariant of the undamped
system. If the initial condition corresponds to vanishing PV, the PV will remain zero
at subsequent times and the meridional PV flux vanishes at any depth. Within the QG
framework this PV flux reads (Vallis 2006)

0 = vq = pxpxx + pxpyy + 1
λ2 pxpzz = 1

λ2 ∂z(pxpz) = 1
λ2 ∂zvb, (5.1)

which indicates that the meridional buoyancy flux is depth-independent. This QG
prediction turns out to be in very good agreement with the numerical data, as illustrated
by the meridional buoyancy flux profiles in figure 7: the low-drag profile in figure 7(a) is
depth-independent to very good accuracy. The moderate-drag profile in figure 7(c) is also
depth-independent in the interior, with slight departures restricted to a boundary-layer near
the surface. Finally, solutions to the QG system – (3.12)–(3.13) together with inversion
relations (B17)–(B18) – are characterized by depth-independent meridional flux profiles
by construction.
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5.2. Vertical flux and bulk stratification
Having determined the vertical structure of the meridional buoyancy flux, we turn to the
vertical buoyancy flux using relation (4.2). We have seen that the overall contribution
from dissipative terms on the right-hand side of that relation is sometimes not entirely
negligible, with r � 0.85 instead of r = 1, but how is that contribution distributed with
depth?

We answer that question in figure 7, where we compare the two flux terms on the
left-hand side of (4.2). Within the central half of the domain, these two terms balance each
other to a good accuracy: the eddy transport current is directed along isopycnals in the bulk
of the domain. However, for several runs this balance becomes unsatisfactory as we move
closer to the top and bottom boundaries, where the vertical flux needs to be compatible
with the boundary conditions: w vanishes at the top free surface, while it matches the
pumping velocity near the bottom boundary. In other words, the diffusive terms in (4.2) are
not entirely negligible near the boundaries. In particular, we expect a strong contribution
from the horizontal diffusive term in (4.2) at the surface, where SQG dynamics predicts a
forward cascade of buoyancy (towards small horizontal scales) (Held et al. 1995; Lapeyre
2017). The depth-independent meridional buoyancy flux in (4.2) is thus balanced by the
vertical buoyancy flux term in the bulk of the domain and by the diffusive terms at the
boundaries. The thickness of the surface-influenced region decreases with the diffusivities
within the SQG framework. However, when the diffusivities reach very low values, sharp
fronts develop, the latter being better described within the semigeostrophic framework.
Close inspection of our numerical runs indicates that the surface-influenced region is
small only if the diffusivities are very weak, with large Reynolds (and Péclet) numbers,
in a regime with weak isopycnal slopes and Ro  1. Figure 7 provides profiles from a
numerical run in such a QG regime with extremely weak diffusivities. Both the meridional
and the vertical buoyancy flux are depth-independent to a good approximation. The scaled
buoyancy fluxes in figure 7 are approximately equal in the bulk of the domain, which
shows that the buoyancy flux is directed along isopycnals. We also provide the profile of
the mixing term εb = Eb;z(∂zb)2 + Eb;⊥|∇⊥b|2 for a series of runs where we lower both
the vertical and horizontal diffusivities for otherwise constant parameters. We observe that
there is significant diapycnal mixing near the top boundary, over a depth that decreases
(albeit slowly) as the diffusivities are lowered. As the latter become asymptotically small,
we expect the diapycnal mixing to be confined to the immediate vicinity of the upper
boundary, the eddy-induced buoyancy current being then along isopycnals in most of the
fluid domain.

The vertical structure of the emergent stratification is deduced from the horizontal- and
time-average of the buoyancy equation (2.14),

db̄
dz

= wb − Ro
∫ z

0 v̄(z̃) dz̃
Eb;z

� wb
Eb;z

, (5.2)

where we have neglected the very weak contribution from v̄ (for the two runs displayed
in figure 7, this contribution is smaller than the contribution from wb by more than
two orders of magnitude). The emergent stratification profile is thus readily given
by that of the vertical buoyancy flux. In the bulk of the domain, the emergent
stratification is thus uniform in the low-diffusivity strongly QG regime where wb is
depth-independent.
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5.3. Gradual barotropization
It is worth stressing the fact that the depth-invariance of the fluxes arises even when
the TKE profile retains some significant depth dependence, as dictated by the QG result
and illustrated by the profiles for a κ∗ = O(1) run in figure 7(c,d) (κ∗ � 0.6). For lower
drag, κ∗ = O(10−1), the flow barotropizes with a TKE profile that gradually becomes
depth-invariant, as seen in figure 7(a,b) (κ∗ � 0.14). The approach to the asymptotic
low-drag predominantly barotropic state is thus rather slow, and this slow approach can
be understood from QG vortex-gas dynamics: multiply the uniform bulk QG PV (3.3)
with b̃ = ∂zp̃, where the tilde denotes departure from the horizontal and temporal mean,
before averaging horizontally and over time. After a few integrations by parts, one is led
to

v2(z)− b̃2(z)
λ2 = const. (5.3)

The vortex-gas scaling regime predicts that v2 is asymptotically greater than b̃2 at low
drag. The second term on the left-hand side of (5.3) is thus negligible at low drag and
one concludes that the flow is barotropic. However, the approach to this asymptotically
barotropic state is rather slow as κ∗ decreases. Indeed, the vortex-gas scalings state that the
(appropriately non-dimensionalized) buoyancy variance scales as D∗, while the horizontal
kinetic energy scales as D∗ log D∗ (see Gallet & Ferrari (2020) for the derivation of these
scaling estimates). While D∗ increases very rapidly with decreasing drag – as exp(c2/κ∗),
see (3.16) – the ratio of the first over the second term on the left-hand side of (5.3) increases
only as log D∗ ∼ 1/κ∗, hence the slow approach to the asymptotic barotropic state.

The vortex-gas scaling theory performs surprisingly well even in the absence of
complete barotropization. To some extent, this can be understood from 2LQG dynamics:
the vortex-gas theory is based on the idea that a barotropic vortex-gas distorts the
background buoyancy gradient, inducing buoyancy fluctuations at the intervortex scale.
Within 2LQG, this regime corresponds to the large-scale-dynamics approximation given
by (32) and (33) in Thompson & Young (2006) (see also Salmon 1980; Larichev & Held
1995), where the buoyancy field is stirred by the barotropic flow only. An interesting
point is that complete barotropization is not required for this large-scale-dynamics
approximation to hold. Instead, only scale separation between the intervortex distance and
the vortex core radius is necessary.

Of course, partial barotropization also affects the main power integral entering the
theory, that is, the balance between the rate of release of available potential energy
(APE) – proportional to the dimensionless meridional buoyancy flux D∗ – and the
frictional dissipation term. Assuming that the latter corresponds mainly to dissipation
by the barotropic flow, the rate of frictional dissipation scales as κ∗D∗ log D∗ (where the
logarithmic correction stems from the fast velocities arising in the vicinity of the vortex
cores, see Gallet & Ferrari (2020)). Balancing this estimate for the frictional dissipation
rate with the rate D∗ of release of APE leads to the scaling prediction (3.16) for D∗. The
assumption that frictional dissipation is associated with the barotropic flow is questionable
when barotropization is only partial. In the present 3-D model, the frictional dissipation
rate is given by the product of the effective friction coefficient with the squared bottom
velocity. According to the relation (5.3), the bottom squared velocity may depart from
the squared barotropic velocity by a correction proportional to b2(0), the latter scaling as
D∗ in the vortex-gas theory. Including this correction leads to the frictional dissipation
rate being proportional to κ∗D∗[log(D∗)+ const.] = κ∗D∗ log(D∗/const.). Balancing this
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last expression for the frictional dissipation rate with the dimensionless rate of release
of APE, D∗, leads again to the scaling prediction (3.16) for the meridional diffusivity.
We conclude that partial barotropization does not affect the scaling prediction for the
meridional buoyancy flux.

In summary, it seems that the vortex-gas theory only requires that the gas be dilute: the
mixing length must be much greater than λ, the ratio of the two scaling as

√
D∗. Using

the scaling expression (3.16) for D∗, we conclude that the vortex-gas scaling predictions
hold provided exp(const./κ∗) � 1, whereas strong barotropization of the flow requires the
much more stringent criterion log D∗ ∼ 1/κ∗ � 1.

6. Conclusion

Through a suite of numerical runs of the Boussinesq Eady problem, we have shown that the
strongly stratified rapidly rotating regime is governed by QG dynamics. One consequence
is that the dependence of the transport properties of the turbulent flow on all control
parameters is encoded in a scaling relation between the dimensionless diffusivity and the
dimensionless drag. That scaling relation is correctly captured by the vortex-gas scaling
theory, see (3.16), initially put forward in the context of the 2LQG model and validated
against numerical simulations with both linear and quadratic drag. In the context of the
Eady problem, the two adjustable parameters arising in that scaling relation take slightly
different values than in the 2LQG problem. We stress the fact that adjusting these two
parameters leads to a quantitative theory for the magnitude and vertical structure of the
meridional buoyancy flux, the vertical buoyancy flux and the emergent stratification, in
terms of the background shear, the Coriolis parameter, the background stratification, the
bottom friction and the diffusivities.

Indeed, the estimate (3.16) for the magnitude of the meridional buoyancy flux readily
translates into a quantitative prediction for the vertical buoyancy flux through the
standard along-isopycnal-transport argument. This argument is validated by comparing the
numerical value of r with the theoretical value r = 1: we obtain numerically r � 0.85 over
the suite of simulations, with r → 1 as we enter the very low-diffusivity QG regime. The
vertical buoyancy flux in turn leads to a quantitative prediction for the magnitude of the
emergent stratification, set by a balance between eddy-induced vertical buoyancy transport
and diffusion. This prediction for the emergent stratification allows us to determine the
region of parameter space where the emergent stratification is negligible as compared with
the imposed background stratification, and the region of parameter space where the sole
emergent stratification is sufficient to induce QG dynamics in the absence of a background
stratification.

Beyond scaling analysis, the 3-D Eady model allows one to address the vertical structure
of the eddy-induced transport. The QG theory predicts that the meridional buoyancy
flux is depth-invariant. This prediction is very specific to the Eady model, however, as
it stems from the absence of interior PV gradients. One expects some vertical structure
for the meridional buoyancy flux in a more realistic model with interior PV gradients.
The prediction of a depth-invariant meridional flux is well satisfied by the numerical data
(more so in the low-drag regime). The along-isopycnal-transport argument then implies
that the vertical buoyancy flux is also depth-independent. The latter prediction is indeed
validated by the strongly QG low-diffusivity data, although some depth-dependence
remains within small boundary layers near the top and bottom boundaries (the thickness of
which decreases, albeit rather slowly, with the diffusivities). A depth-independent vertical
buoyancy flux in turn induces a uniform emergent stratification. The TKE profile retains
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κ∗
Figure 8. Same as figure 4 for the entire dataset. The blue stars denote the runs retained throughout the paper
and reported in table 1. They are characterized by large enough Reynolds numbers, Rev > 4000 and Reh > 350,
together with low enough core vorticity to ensure QG dynamics, 〈vb〉 /(Roλ2) < 0.5. The runs that violate any
of these inequalities are represented with black crosses and reported in table 2. They are characterized by a
lower eddy diffusivity as compared with the QG vortex-gas master curve in figure 4.

some depth dependence for moderate drag and gradually becomes more depth-invariant as
the drag is decreased, in line with a barotropization of the flow. This slow barotropization
of the flow as the drag coefficient decreases can be explained within the vortex-gas
scaling theory, and we have provided arguments indicating that some baroclinicity does
not invalidate the theory. In particular, the theory could have the ability to describe the
transport induced by the midocean eddies considered in Arbic & Flierl (2004) based on
current-meter data (Wunsch (1997), and references therein), which retain some significant
baroclinicity. For instance, figure 7(c,d) illustrate an equilibrated flow with comparable
baroclinic and barotropic TKEs. Such near equipartition of barotropic and baroclinic
energies is consistent with ACC dynamics. The dimensionless drag coefficient is κ∗ � 0.6
for this run. Assuming the ocean-like parameter values Ro = 0.25 and N/f = 30, this
value for κ∗ translates into a dimensionless linear drag coefficient κeff = 0.005. Using
a Coriolis parameter f � 10−4 rad s−1 the corresponding dimensional magnitude of the
linear drag coefficient is (25 days)−1. The order of magnitude is correct, this value being
greater by a factor of four than the typical estimates reported in Arbic & Flierl (2004).
Vorticity snapshots associated with this run are provided in figure 2(d,e). We observe
that the vortex gas is moderately dilute, with an intervortex distance comparable to the
core radius. The intervortex distance increases to 3–5 core radii for the lower-drag run
illustrated in figure 2(b,c). These values for the intervortex distance are within the range
of typical oceanic observations. Beyond the 2LQG approach of Arbic & Flierl (2004), a
more quantitative comparison with ACC dynamics and midocean eddies in general would
require the inclusion of the vertical structure of the current profile and density stratification
into the 3-D model, together with quadratic bottom drag.

Of course, whether the equilibrated Eady flow is governed by QG vortex-gas dynamics
depends on the values of the control parameters, and the runs in table 1 represent only a
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subset of our entire suite of numerical runs. Satisfactory collapse onto the QG vortex-gas
master curve in figure 4 arises provided (i) the diffusivities are sufficiently low and (ii)
the assumptions of QG dynamics are well satisfied. Specifically, for a run to be retained
in table 1 we demand that the Reynolds numbers be large enough, and that the isopycnal
slope and vortex core vorticity be low enough. Regarding the low diffusivities, we used
a threshold value for the vertical Reynolds (and Péclet) number Rev = Ro/Ez of the
base shear flow, Rev > 4000, together with a threshold value for the emergent horizontal

Reynolds (and Péclet) number Reh =
√〈

v2
〉
λ/E⊥ > 350. Regarding the assumptions of

QG dynamics, we find that the isopycnal slope is small in all the numerical runs. However,
the bulk vertical vorticity ζ reaches large values inside the vortex cores, especially in
the low-drag regime, see figure 2(b). Within the vortex-gas theory, the circulation of the
vortices scales like the meridional eddy diffusivity 〈vb〉 /Ro, while the vortex core radius
scales like the Rossby deformation radius λ. Demanding that the core vorticity be at most
comparable to f then amounts to satisfying the inequality 〈vb〉 /(Roλ2) < 0.5, where the
threshold value 0.5 has been chosen somewhat arbitrarily. The runs in table 1 satisfy the
three inequalities above. The emergent Rossby number, measured as the root mean square
vertical vorticity at mid-depth divided by f , is at most of the order of 0.1 for these runs. The
remaining runs are reported in table 2. They violate at least one of the three inequalities
above, which results in an eddy diffusivity that lies below the QG vortex-gas master curve,
as illustrated in figure 8. An extreme example of breakdown of the QG model when the
assumptions of QG dynamics are not satisfied is reported in Molemaker, McWilliams &
Capet (2010). They perform numerical simulations without bottom friction. In the absence
of a large-scale energy sink for the QG inverse cascade, the flow intensifies until the
emergent Rossby number is of the order of unity. The QG expansion then breaks down
and, consistently, their Boussinesq simulations greatly depart from QG dynamics, with a
forward energy cascade that halts the intensification of the flow.

In summary, our study demonstrates how the vortex-gas scaling theory can be extended
to describe the structure and magnitude of eddy-induced transport by fully 3-D baroclinic
turbulence. The success of the vortex-gas scaling theory for both the 2LQG model and
the Eady model shows that the theoretical predictions hold regardless of whether the
flow is driven by boundary dynamics or interior PV gradients. The model is strongly
idealized, however, and should be complexified if the resulting parameterization is to
describe real atmospheres or oceans. In the atmospheric context, one may want to include
β and address the eddy-induced transport in the equilibrated Charney model. The simple
advective–diffusive balance that sets the emergent vertical stratification could be modified
as well, with the goal of better capturing the feedback of baroclinic turbulence on the
vertical structure of the atmosphere (Held & Suarez 1994).

The β-Plane dynamics induced by planetary curvature or sloping topography are
also important ingredients of ocean dynamics. In the context of the ACC, an accurate
description of mesoscale transport probably requires a base state with depth-dependent
zonal shear and an inversion of the meridional PV gradient at some finite depth (Charney
& Stern 1962; Pedlosky 1979; Smith & Marshall 2009; Abernathey et al. 2010). The
vortex-gas approach has been extended to the β-plane within the 2LQG framework, but
the ability of the resulting theory remains to be assessed for such a vertically structured
fully 3-D model.

Funding. This research is supported by the European Research Council under grant agreement FLAVE
757239. The numerical study was performed using HPC resources from GENCI-CINES and TGCC (grant
2021-A0102A12489 and grant 2021-A0102A10803).
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Appendix A. Effective friction coefficient associated with partial Ekman pumping

The frictional boundary condition (2.16a,b) induces damping both directly, at the bottom
boundary, and indirectly, because it leads to some vertical dependence of the flow and
therefore some additional viscous dissipation. Indeed, a truncated Ekman spiral connects
the bulk flow to the frictional bottom boundary condition. The additional viscous damping
associated with the truncated Ekman spiral extracts energy from the bulk flow. In this
appendix, we compute the resulting total friction acting on the bulk flow and the associated
effective friction coefficient.

Consider a bulk horizontal flow (U,V, 0) connected to the bottom boundary condition
(2.16a,b) by an Ekman spiral. In the vicinity of the bottom boundary the dimensionless
boundary-layer equations are

V − v = Ez∂zzu, (A1)

u − U = Ez∂zzv, (A2)

where the z-independent U and V terms arise from the horizontal pressure gradient. The
solution that satisfies the bottom boundary condition is

u + iv = (U + iV)F(z), (A3)

where

F(z) = 1 −
exp

(
− 1 + i√

2Ez
z
)

1 + (1 + i)
√

Ez√
2κ

. (A4)

The effective dimensionless friction coefficient κeff is defined as the total dissipated power
associated with this flow divided by the kinetic energy of the bulk flow. It contains
two terms, κeff = κ1 + κ2, where κ1 is associated with the power directly dissipated by
frictional damping at the bottom boundary while κ2 is associated with viscous damping in
the partial Ekman spiral (A4). Here κ1 is simply given by

κ1 = κ|u(z = 0)+ i v(z = 0)|2
|U + iV|2 = κ|F(0)|2, (A5)

while κ2 is given by

κ2 = Ez
∫ 1

0 (∂zu)2 + (∂zv)
2dz

|U + iV|2 � Ez

∫ ∞

0
|F′(z)|2dz =

√
Ez/2(

1 +
√

Ez

2
1
κ

)2

+ Ez

2κ2

. (A6)

An alternative approach to determining κeff consists in computing the friction term
induced by Ekman pumping associated with a bulk flow that varies slowly with x and y.
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Denoting the bulk vertical vorticity as ζ , the pumping velocity just above the partial Ekman
spiral reads w|0+ = κ3ζ |0+ . The goal here is to show that κ3 is equal to κeff , above.

For simplicity, consider a purely barotropic flow U( y) that varies slowly in y. The bulk
flow has vertical vorticity ζ = −U′( y). The total flow, including the partial Ekman spiral,
is

u + iv = U( y)F(z), (A7)

and the incompressibility condition imposes a vertical velocity such that

∂zw = −U′( y) Im{F(z)}. (A8)

Integrating over the Ekman layer thickness yields the pumping velocity,

w|0+ = ζ |0+

∫ ∞

0
Im{F(z)} dz, (A9)

and we conclude that

κ3 =
∫ ∞

0
Im{F(z)} dz =

√
2Ez

1 +
√

2Ez

κ
+ Ez

κ2

×
(

1
2

+
√

Ez

2
1
κ

)
. (A10)

One can check that the two approaches yield the same effective friction coefficient κeff ,
that is κeff = κ3 = κ1 + κ2.

Appendix B. Quasigeostrophy for the 3-D Eady problem

B.1. Asymptotic expansion
The QG dynamics stems from an expansion in small isopycnal slope Ro/λ2  1. To
alleviate notations, we reproduce the expansion here by assuming a uniform stratification
with λ = O(1) and expanding the dimensionless variables in terms of the Rossby number
Ro  1 (but the reader should keep in mind that the results hold as long as Ro/λ2  1).
Expand the fields as

ṽ = Rov(0) + Ro2v(1) + · · · , (B1)

p̃ = Ro p(0) + Ro2 p(1) + · · · , (B2)

b̃ = Ro b(0) + Ro2 b(1) + · · · , (B3)

where the tilde on the left-hand side denote departures from the horizontally averaged
fields. The fields depend on space and on the slow time variable t̂ = Ro t only. We neglect
the diffusive terms in the bulk of the fluid domain. The friction coefficient in the pumping
boundary condition w|0+ = κeff ζ |0+ is assumed to be of order Ro, that is κeff = Ro κ̂ .
Substitution into (2.13) yields, to order Ro,

ez × v(0) = −∇p(0) + b(0)ez. (B4)

The boundary conditions reduce to w(0)|0+ = w(0)|1 = 0 at this order, and the solution
corresponds to geostrophic and hydrostatic balances,

v(0) = −∇ × (p(0)ez), b(0) = ∂zp(0). (B5a,b)

The vertical velocity vanishes at this order, as seen by taking the vertical component
of the curl of (B4) before making use of the incompressibility constraint and of the
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boundary conditions. The vertical vorticity is ζ (0) = �⊥p(0). Consider then the vertical
vorticity equation and the buoyancy equation, both at order Ro2,

∂t̂�⊥p(0) + z∂x�⊥p(0) + J( p(0), �⊥p(0)) = ∂zw(1), (B6)

∂t̂∂zp(0) − ∂xp(0) + z∂xzp(0) + J( p(0), ∂zp(0)) = −λ2w(1). (B7)

Differentiating the second equation with respect to z before adding the first equation
multiplied by λ2 allows us to eliminate w(1). The resulting equation can be written as a
conservation equation,

∂t̂q + J( p(0), q)+ z∂xq = 0 (B8)

for the QG PV,

q = ∇2
⊥p(0) + ∂zzp(0)

λ2 . (B9)

In terms of the original variables, (B8) and (B9) correspond to (3.2) and (3.3) in the main
body of the article. The boundary conditions at this order are w(1)|1 = 0 and w(1)|0+ =
κ̂�⊥p(0)|0+ . Substitution of these values of w(1) into (B7) evaluated at z = 1 and z = 0+
leads to the boundary conditions (3.4) and (3.8) in terms of the original variables.

B.2. Inversion relation and effective 2-D dynamics
An efficient way to solve the QG problem is to march in time the 2-D equations (3.12)
and (3.13). To wit, at each time step we need to infer P|0+ and P|1 in terms of ∂zP|0+ and
∂zP|1. This inversion is performed by assuming that the PV vanishes in the bulk of the
fluid domain, Q = 0 being a trivial solution to (3.10). Decompose P as a Fourier series in
the horizontal directions,

P(X, Y, z, T) = ΣkP̂k(z, T)× eik · X , (B10)

where X = (X, Y) and the wavevector k takes the discrete values compatible with the
periodic horizontal boundary conditions. We also introduce the following notations for
the Fourier transform of P and its vertical derivatives at the top and bottom boundaries:

P|0+ = Σk{P|0}k eik · X , (B11)

P|1 = Σk{P|1}k eik · X , (B12)

∂zP|0+ = Σk{∂zP|0}k eik · X , (B13)

∂zP|1 = Σk{∂zP|1}k eik · X , (B14)

where we omit the time dependence of the Fourier coefficients to alleviate notations. The
PV associated with each wavevector k vanishes,

− k2P̂k + ∂zzP̂k = 0, (B15)

where k = |k|. The solution to this equation whose vertical derivative matches {∂zP|0}k
and {∂zP|1}k at the boundaries is

P̂k(z, T) = −{∂zP|0}k cosh[k(z − 1)] + {∂zP|1}k cosh(kz)
k sinh k

. (B16)
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Evaluating this quantity at the boundaries z = 0 and z = 1 yields the following two
inversion relations providing {P|0}k and {P|1}k in terms of {∂zP|0}k and {∂zP|1}k:

{P|0}k = −{∂zP|0}k cosh k + {∂zP|1}k

k sinh k
, (B17)

{P|1}k = −{∂zP|0}k + {∂zP|1}k cosh k
k sinh k

. (B18)

A time step of the QG Eady problem consists of (i) marching the 2-D equations (3.12) and
(3.13) for one time step, before (ii) inferring the new fields P|0+ and P|1 using the inversion
relations (B17) and (B18).

B.3. Symmetry argument for wu
Consider a solution p̃ = P(x, y, z, t), q = Q(x, y, z, t) to the QG system: the functions
P and Q satisfy (3.2)–(3.3) with the boundary conditions (3.4) and (3.8). The vertical
velocity associated with this solution is inferred from (B7), which reads in terms of the
original variables,

− λ2w = ∂tzp̃ − Ro ∂xp̃ + Ro z∂xzp̃ + J(p̃, ∂zp̃). (B19)

Introduce the following transformed solution:

p̂(x, ŷ, z, t) = −P(x, y = −ŷ, z, t), q̂(x, ŷ, z, t) = −Q(x, y = −ŷ, z, t). (B20a,b)

The fields p̂(x, ŷ, z, t) and q̂(x, ŷ, z, t) also satisfy the QG system. To check this, the
operator ∂y should be understood as a derivative with respect to the second variable, and
thus replaced by ∂ŷ in (3.2)–(3.3) and boundary conditions (3.4) and (3.8) where p̃ and q
have been replaced by p̂ and q̂, respectively. There is a direct correspondence between the
fields associated with the original solution and the fields associated with the transformed
one (the latter being evaluated at ŷ = −y). Denoting the former with the standard notations
and the latter with hat variables, we obtain

û = −∂ŷp̂ = −∂yP = u, (B21)

v̂ = ∂xp̂ = −∂xP = −v, (B22)

b̂ = ∂zp̂ = −∂zP = −b, (B23)

ŵ = −w, (B24)

where the hat variables are evaluated at ŷ = −y, while the variables associated with the
original solution are evaluated at y. The last relation has been obtained by substitution
into (B19) for the vertical velocity. This correspondence indicates, for instance, that the
meridional and vertical buoyancy fluxes are equal for the original and for the transformed
solutions: v̂b̂ = vb and ŵb̂ = wb. However, the vertical flux of zonal momentum is
opposite between the two solutions: ŵû = −wu. Because the original solution and
the transformed ones are equally probable, we conclude that wu = 0 within the QG
framework, while vb /= 0 and wb /= 0.
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