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Abstract
We consider Bayesian inference for large-scale inverse problems, where com-
putational challenges arise from the need for repeated evaluations of an expen-
sive forward model. This renders most Markov chain Monte Carlo approaches
infeasible, since they typically require O(10*) model runs, or more. Moreover,
the forward model is often given as a black box or is impractical to differ-
entiate. Therefore derivative-free algorithms are highly desirable. We propose
a framework, which is built on Kalman methodology, to ef ciently perform
Bayesian inference in such inverse problems. The basic method is based on an
approximation of the Itering distribution of a novel mean- eld dynamical sys-
tem, into which the inverse problem is embedded as an observation operator.
Theoretical properties are established for linear inverse problems, demonstrat-
ing that the desired Bayesian posterior is given by the steady state of the law
of the Itering distribution of the mean- eld dynamical system, and proving
exponential convergence to it. This suggests that, for nonlinear problems which
are close to Gaussian, sequentially computing this law provides the basis for
ef cient iterative methods to approximate the Bayesian posterior. Ensemble
methods are applied to obtain interacting particle system approximations of the
Itering distribution of the mean- eld model; and practical strategies to further
reduce the computational and memaory cost of the methodology are presented,
including low-rank approximation and a bi- delity approach. The effectiveness
of the framework is demonstrated in several numerical experiments, includ-
ing proof-of-concept linear/nonlinear examples and two large-scale applica-
tions: learning of permeability parameters in subsurface ow; and learning
subgrid-scale parameters in a global climate model. Moreover, the stochastic

Author to whom any correspondence should be addressed.

1361-6420/22/125006+40$33.00 = 2022 IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1361-6420/ac99fa
https://orcid.org/0000-0001-6072-9352
mailto:dzhuang@caltech.edu
mailto:jh4427@nyu.edu
mailto:sebastian.reich@uni-potsdam.de
mailto:astuart@caltech.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ac99fa&domain=pdf&date_stamp=2022-10-31

Inverse Problems 38 (2022) 125006 D Z Huang et al

ensemble Kalman lter and various ensemble square-root Kalman lters are all
employed and are compared numerically. The results demonstrate that the pro-
posed method, based on exponential convergence to the Itering distribution of
a mean- eld dynamical system, is competitive with pre-existing Kalman-based
methods for inverse problems.

Keywords: inverse problem, uncertainty quanti cation, Bayesian inference,
derivative-free optimization, mean- eld dynamical system, interacting particle
system, ensemble Kalman Iter

(Some gures may appear in colour only in the online journal)

1. Introduction

11 Orientation

The focus of this work is on ef cient derivative-free Bayesian inference approaches for large
scale inverse problems, in which the goal is to estimate probability densities for uncertain
parameters, given noisy observations detifrem the output of a model that depends on the
parameters. Such approaches are highly ddsifabnumerous models arising in science and
engineering applications, often de ned througdrtial differential equations. These include,

to name a few, global climate model calibratidn?], material constitutive relation calibration
[3..5], seismic inversion in geophysic6.[10], and biomechanics inverse probleniqd,[12].

Such problems may feature ftiple scales, may include chaotic dynamics, or may involve
turbulent phenomena; as a result the forward models are typically very expensive to evaluate.
Moreover, the forward solvers are often given as a black box (e.g., off-the-shelf sdi@grs [

or multiphysics systems requiring coupling of different solvérg [L5]), and may not be dif-
ferentiable due to the numerical rhetds used (e.g., embedded boundary metti6di[7] and
adaptive mesh re nemeniB, 19]) or because of the inherently discontinuous physics (e.g. in
fracture RQ] or cloud modeling 21, 22)).

Traditional methods for derivative-free Bayesian inference to estimate the posterior
distribution include speci c instances of the Markov chain Monte Carlo methodoRig\2[6]
(MCMCQ), such as random walk Metropolis or the preconditioned Crank...Nicolson (pCN)
algorithm [26], and sequential Monte Carlo metho@®¥] 28] (SMC), which are in any case
often interwoven with MCMC. These methods typically requ€l0?) iterations, or more,
to reach statistical convergence for the coaxplorward models which motivate our work.
Given that each forward run can be expensive, condu@ifig?) runs is often computation-
ally unfeasible. We present an approach based on the Kalman Iter methodology, which aims to
estimate the rsttwo moments of the posterior distribution. We demonstrate that, in numerical
tests across a range of examples, the proposed methodologies convergelflibjritera-
tions, using0(10) embarrassingly-parallel model evaluations per step, resulting in orders of
magnitude reduction in cost over derivative-free MCMC and SMC methods. We also demon-
strate favorable performance in comparisathvexisting Kalman-based Bayesian inversion
techniques.

In subsectiorl.2, we outline the Bayesian approach to inverse problems, describing vari-
ous approaches to sampling, formulated as dyinal systems on probability measures, and
introducing our novel mean eld approach. In subsectlod) we discuss pathwise stochastic
dynamical systems which realize such dynamics at the level of measures, and discuss ltering
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algorithms which may be applied to them for the purposes of approximate inversion. Subsec-
tion 1.4 highlights the novel contributions in this paper, building on the context established
in the two preceding subsections. Subsecfidhsummarizes notational conventions that we
adopt throughout.

12. Bayesian formulation of the inverse problem

Inverse problems can be formulated as recovering unknown parameteRd' from noisy
observatiory R related through

y=G()+ . )

Here G denotes a forward model mapping parameters to output observables,dambtes
observational noise; for simplicity we will assume known Gaussian statistidd: (0, ).In
the Bayesian perspectiveandy are treated as random variables. Given the prigg( ) on ,
the inverse problem can be formulated as nding the posteroy ) on giveny[29..31]:

1 « 1 si -
posl( )= Z(y) e (V) prior( ), (.y)= 2 2(ySG()) 2 (2)
andZ(y) is the normalization constant
z@)= & P pio ). 3)

We focus on the case, where the prigg,, is (or is approximated as) Gaussian with mean and
covarianceo and o, respectively. Then the posterigy,s{ ) can be written as

1 &
e R( vy) ,
Z(y)

12.1 Computational approaches. Bayesian inference requires approximation of, or sam-
ples from, the posterior distribution given by equati@p (There are three major avenues to
approximate the posterior distribution:

posl ) = (M= (W, S S @

€ Those based on variational inferen®2[33], where a parameterized approximate den-
sity is constructed and optimized to minimize the distance to the posterior density. They
include Gaussian variational inferen@[.36] and normalizing ows B7].

€ Those based on sampling and more importantly the invariance of measures and ergodicity.
They include MCMC R3, 24], Langevin dynamics38, 39|, and more recently interacting
particle approache5, 40.42].

At an abstract mathematical level, invariance and ergodicity-based approaches to sam-

pling from the posterior y, rely on the transition kernel,( , ) such that

posi( ) = (4 ) pos )d (%)

that is, the posterior distribution,,( ) is invariant with respect to the transition kernel
(, ). Furthermore, starting from any initial distribution the associated Markov chain
should approach the invariant measugg,( ) asymptotically.
€ Those based on coupling ideas (mostly in the form of coupling the prior with the poste-
rior). While several sequential data assimilation methods, such as importance sampling-
resampling in SMC43] and the ensemble Kalman IteringHt. .46], can be viewed under
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the coupling umbrella, the systematic exfdtion/exposition of the coupling perspective
in the context of Bayesian inference is moeeent, including the ideas of transport maps
[47.51].
At an abstract mathematical level, the coupling approach is based on a transition kernel
c( , )suchthat

posi( ) = c( ) prior( )d . (6)

The transition kernel forms a coupling betweka prior and the posterior distribution and

is applied only once. The induced transition from ., to post IS Of the type of

a McKean...Vlasov mean- eld process and can be either deterministic or stoctgjstic [

In practice the methodology is implemented via an approximate coupling, using linear
transport maps:

=A +Db, (7)

where the matrixA and the vectoib depend on the prior distribution,,,, the data
likelihood , and the datg, and are chosen such that the induced random variable
approximately samples from the posterior distributigg, Many variants of the popular
ensemble Kalman lIter can be derived within this framework.

12.2. A novel algorithmic approach. The main contribution of this paper is to incorporate all
three approaches from above by designing a particular (arti cial) mean- eld dynamical system
and applying ltering methods, which employ a Gaussian ansatz, to approximate the ltering
distribution resulting from partial observation of the system; the equilibrium of the ltering
distribution is designed to be close to the desired posterior distribution. At an abstract level,
we introduce a data-independent transition kernel, denoted.by, ), and another data-
dependent transition kernel, denoted by( , ), such that the posterior distribution
remains invariant under the both transition kernels combined, that is,

posl( ): A( ) ) P( ) )POSl( )d d . (8)

The rst transition kernel, 5( , ), corresponds to the prediction step in ltering methods
and is chosen such that

wi( )= e, ) a()d and  wea()  n()® )

where 0< < listhetime-step size, a free parameter, gfid) denotes the current density.
In other words, this transition kernel corpemds to a simple rescaling of a given density. The
second transition kernel,,( , ), corresponds to the analysis step in Itering methods and
has to satisfy

nt1( )= AC ) nea( )d and  nea() pos ) nt1( ). (10)

This transition kernel depends on the data and the posterior distribution and performs a suitably
modi ed Bayesian inference step. Combig the two preceding displays yields

w1( ) pesl ) (). (11)
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It is immediate that the overall transition n+ 1 1S indeed invariant with respect tQs;
furthermore, by taking logarithms in the mapping fromto |, ; it is possible to deduce
exponential convergence to this steady state, for any 0 < 1. In our concrete algorithm a
mean eld dynamical system is introduced for which equatibd) (s satis ed exactly, while
equation 9) is satis ed only in the linear, Gaussian setting; the resulting Itering distribution
is approximated using Kalman methodology applied to Iter the resulting partially observed
mean- eld dynamical system. We emphasizattthe involved transition kernels are all of
McKean...Vlasov type, that is, they depend on the distribution of the parameters

There are several related approaches. \WWation in this context in particular the recently
proposed consensus-based methods. These sampling methods were analyzed in the context
of optimization in p2]. Similar ideas were then developed for consensus based sampling
(CBS) B3] based on the same principles empldyeere: to nd a mean- eld model which,
in the linear Gaussian setting converges asymptotically to the posterior distribution, and then
to develop implementable algorithms by employing nite particle approximations of the mean-
eld. Another related approach has been propose®# here data assimilation algorithms
are combined with stochastic dynamics in order to approximately sample from the posterior
distribution o

13. Filtering methods for inversion

Since ltering methods are at the heart of our proposed methodology, we provide here a
brief summary of a few key concepts. Filteringethods may be deployed to approximate the
posterior distribution given by equatioB)( The inverse problemis rst paired with a dynam-

ical system for the parametesq. 58], leading to a hidden Markov model, to which Itering
methods may be applied. In its most basic form, the hidden Markov model takes the form

evolution: +1= (12a)

observation: yni1= G( ne1)+ ne 1 (12b)

here , is the unknown state vector,, ; is the output of the observation model, ang 1

N (0, ) is the observation error at thith iteration. Any Itering method can be applied to
estimate , given observationdafg/’} - ;. The Kalman lter [59] can be applied to this setting
provided the forward operat@is linear and the initial state; and the observation errors are
Gaussian. The Kalman Iter has been extethttenonlinear and non-Gaussian settings in man-
ifold ways, including but not limited to, the extended Kalman lter (EKF, or sometimes ExKF)
[60, 61], the ensemble Kalman Iters (EnKFBP. .64], and the unscented Kalman (UKF) Iter
[58, 65]. We refer to the extended, ensemble and UKF ltersagproximate Kalman lters

to highlight the fact that, outside the linear setting where the Kalman &6} i exact, they
are all uncontrolled approximations designed on the principle of matching rst and second
moments.

More precisely, the EnKF uses Monte Carlo séingpto estimate desired means and covari-
ances empirically. Its update step is of the foifngnd can be either deterministic or stochastic.
The ensemble adjustment/transform lters are particle approximations of square root lters, a
deterministic approach to matching rst and second moment informa@iginThe UKF Iter
uses quadrature, and is also a deterministic method; it may also be viewed as approximating
a square root lter. The stochastic EnKF on the other hand compares the Wataodel gen-
erated data and its update step is intrinsically stochastic, that is, the eictdr) itself is
random.
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All of the Itering methods to estimate, given{y'}"_ ; that we have described so far may
be employed in the setting wheye vy, repeated exposure of the parameter to the data helps
the system to learn the parameter from the data. In order to maintain statistical consistency, an
N-fold insertion of the same dayerequires an appropriate modi cation of the data likelihood
function and the resulting Bayesian inference step becomes

() mea() ()N (Y, (13)

Initializing with o( ) = ol ), afterNiterations, y( ) is equal to the posterior density. The

Itering distribution for (12) recovers this exactly 'y and if the variance of is rescaled
by N; use of ensemble Kalman methods in this sgttéads to approximate Bayesian inference,
which is intuitively accurate when the posterior is close to Gaussian. We note that the resulting
methodology can be viewed as a homotopy method, such as 8¥@rd transport variants
[47], which seek to deform the prior into the posterior in one unit time with a nite number
of inner steps$\,,foundational papers introducing ensemble Kalman methods in this context
are b5, 56, 67]. Adaptive time-stepping strategies in this context are explore®&n.70].
Throughoutthis paper, we will d@te the resulting methods as iterative extended Kalman lter,
iterative ensemble Kalman Iter (IEnKF), iterative unscented Kalman lter (IUKF), iterative
ensemble adjustment Kalman lter (IEAKF) and iterative ensemble transport Kalman Iter
(IETKF).
We emphasize that multiple insertions of the same gatéhout the adjustmentl3) of
the data likelihood function, and/or over arbitrary numbers of steps, leads to the class of
optimization-based Kalman inversion methods: EXT]|[ Tikhonov-regularized EKI, termed
TEKI [7]] and unscented Kalman inversion, UKTZ]; see also T3 for recent adaptive
methodologies which are variants on TEKI. These variants of the Kalman lIter lead to ef cient
derivative-free optimization approaches to approximating the maximum likelihood estimator
or maximuma posterioriestimator in the asymptotic limit as . The purpose of our
paper is to develop similar ideas, based on iteration to in nitp,ibut to tackle the problem
of sampling from the posterior,.( ) rather than the optimization problem. To achieve these
we introduce a novel mean- eld stochastic dynamical system, generalitR)ga(d apply
ensemble Kalman methods to it. This leads to Bayesian analogues of EKI and the UKI. To
avoid proliferation of nomenature, we will also refer to these as EKI and UKI relying on
the context to determine whether the optimization or Bayesian approach is being adopted;
in this paper our focus is entirely on the Bayesian context. We will also use ensemble adjust-
mentand transform lters, denoted as EAKF and ETKF, noting that these two may be applied in
either the optimization (usind.@)) or Bayesian (using the novel mean- eld stochastic dynam-
ical system introduced here) context, but that here we only study the Bayesian problem. The
main conclusions of our work are two-fold, concerning the application of Kalman methods to
solve the Bayesian inverse problem: that with carefully chosen underlying mean- eld dynam-
ical system, such that the prediction and analysis steps approximate eq@néad (eplicate
equation 10), iterating to in nity leads to more ef cient and robust methods than the homotopy
methods which transport prior to posterior in a nite number of steps; and that determin-
istic implementations of ensemble Kalman methods, and variants, are superior to stochastic
methods.
The methods we propose are exact in the setting of liGand Gaussian prior density

priors DU, for nonlineaiG, the Kalman-based Iters we employ generally do not converge to
the exact posterior distribution, due to the Gaussian ansatz used when deriving the method; neg-
ative theoretical results and nemical evidence are reported ird, 75]. Nonetheless, practical
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experience demonstrates that the methodology can be effective for problems with distributions
close to Gaussian, a situation whiarises in many applications.

Finally, we note that we also include comparisons with the ensemble Kalman sampler
[75..77], which we refer to as the EKS, an ensemble based Bayesian inversion method derived
from discretizing a mean- eld stochastic differential equation and which is also based on iter-
ation to in nity, thatis, on the invariance principle of the posterior distribution; and we include
comparison with the CBS approacs3 mentioned above, another methodology which also
iterates a mean- eld dynamical system to in nity to approximate the posterior.

14. Our contributions

The key idea underlying this work is the development of an ef cient derivative-free Bayesian
inference approach based on applying Kalman-based ltering methods to a hidden Markov
model arising from a novel mean- eld dynamical system. Stemming from this, our main
contributions are as follovis

(a) Inthe setting of linear Gaussian inverse problems, we prove that the Itering distribution
of the mean eld model converges exponentially fast to the posterior distribution.

(b) We generalize the inversion methods EKI, UKI, EAKI and ETKI from the optimization
to the Bayesian context by applying the relevant variants on Kalman methodologies to the
novel mean- eld dynamical system (Bayesian) rather tharl 8 (optimization).

(c) We study and compare application of both deterministic and stochastic Kalman methods
to the novel mean- eld dynamical system, demonstrating that the deterministic methods
(UKI, EAKI and ETKI) outperform the stochastic method (EKI); this may be attributed
to smooth, noise-free approximations restfrom deterministic approaches.

(d) We demonstrate that the application of Kalman methods to the novel mean- eld dynamical
system outperforms the application of Kalman Iters to transport/coupling models,the
IEnKF, IUKF, IEAKF and IETKF approaches; this may be attributed to the exponential
convergence underlying the lIter for the novel mean- eld dynamical system.

(e) We also demonstrate that the application of Kalman methods to the novel mean- eld
dynamical system outperforms the EKS, when Euler...Maruyama discretization is used,
because the continuous-time formulation regsivery small time-steps, and CBS which
suffers from stochasticity, similarly to the EKI.

(f) We propose several strategies, inchglilow-rank approximation and a bi- delity
approach, to reduce the computational and memory cost.

(g) We demonstrate, on both linear and nonlinear model problems (including inference for
subsurface geophysical properties in porous medium ow), that application of determin-
istic Kalman methods to approximate the lItering distribution of the novel mean- eld
dynamical system delivers mean and covariance which are close to the truth or to those
obtained with the pPCN MCMC method. The latter u§§40*) model evaluations or more
whilst for our method onlyO(10) iterations are required with(10) ensemble members,
leading to onlyO(10%) model evaluations, two orders of magnitude savings.

4In making these statements, we acknowledge that for liGearssian problems it is possible to solve the Bayesian
inverse problem exactly in one step, or multiple stapgsng the Kalman lter in transport/coupling mode, when
initialized correctly and with a large enough ensemble. B\, the transport/coupling methods are not robust to
perturbations from initialization, non-Gaussianity amdfsrth, whereas the methods we introduce are. Our results
substantiate this claim.
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(h) The method is applied to perform Bayesian parameter inference of subgrid-scale parame-
ters arising in an idealized global climatedel, a problem currently far beyond the reach
of state-of-the-art MCMC methods such as pCN and variants.

The remainder of the paper is organized as follows. In se@jdhe mean eld dynam-
ical system, various algorithms which approximate its Itering distribution, and a complete
analysis in the linear setting, are all presented. These correspond to our contributions (a) and
(b). In sectiorB, strategies to speed up the algorithm and improve the robustness for real-world
problems are presented. These correspond to our contribution (f). Numerical experiments
are provided in sectiod; these serve to empirically con rm the theory and demonstrate the
effectiveness of the framework for Bayesian inference. These correspond to our contributions
(c), (d), (e), (g) and (h). We malencluding remarks in sectidn

The code is accessible online:

https://github.com/Zhengyu-Huang/InverseProblems.jl

15. Notational conventions

A BandA BdenoteA S Bpositive-de nite or positive-semide nite, for symmetric matri-
cesA B. - , -,- denote Euclidean norm and inner-product. We zise= {0,1,2,...} to
denote the set of natural numbeks(-, -) to denote Gaussian distributions; an(@ to denote
the spectral radius. As encountered in subsecti@we make use of the similar symbol
for densities; these should be easily distirsipgid from spectral radius by context and by a
different font.

2. Novel algorithmic methodology

Our novel algorithmic methodology is introduced in this section. We rstintroduce the under-
lying mean- eld dynamical system, which has prediction and analysis steps corresponding to
the aforementioned transition kernels, in subse@idnThen, in subsectio®.2, we introduce

a class of conceptual Gaussian approximation algorithms found by applying Kalman method-
ology to the proposed mean- eld dynamical system. Through linear analysis, we prove in
subsectior2.3that these algorithms converge exponentially to the posterior. For the nonlinear
setting, a variety of nonlinear Kalman inversion methodologies are discussed in subgettion

2.1 Mean-field dynamical system

Following the discussion from sectidn2.2 we propose an implementation &) (to solve
inverse problems by pairing the parameter-to-data map with a dynamical system for the param-
eter, and then employ techniques from ltegito estimate the parameter given the data.

We introduce the prediction step

1= nt n+1 (14)

Here n+qisthe unknown state vectorand.1 N (0, +1)istheindependent, zero-mean
Gaussian evolution error, which will be chosen such thdtifiimics @) for Gaussian densities.
The analysis stefdl() follows exactly from the observation model ( rst introduced #1])

Xn+1 = F( n+1)+ n+ 1 (15)

here we have de ned the augmented forward map
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FOy= &) (16)

with +1 N (0, n+1)the independent, zero-mean Gaussian observation errox,and
the output of the observation model at time 1. We de ne arti cial observatiorx;, , using

the following particular instance of the data, constructed from the one obseryadimh the
prior mearnrg and assumed to hold for all  1:

Xty 1= Xi= r); . (17)
We will apply ltering methods to condition, on Y, = {x}, X5, ..., Xy}, the observation set
at timen. As we will see later, the choice ¢%&'} - 1 leads to the correct posterior.

LetC, denote the covariance of the conditional random varigkj¥,. Then the error covari-
ance matrice§ n+1} and{ n+1} in the extended dynamical systetd) and (15) are
chosen at theth iteration, as follows:

1 0

1= 0 0 and 1= 18 Ch. (18)
Here 0< < 1, andin our numerical studies we choose = 1/ 2, although other choices
are possible. Since the arti cial evolution error covariance,. 1 in (14) is updated based on
Cn, the conditional covariance ofj| Y, it follows that (L4) is a mean- eld dynamical system:

it depends on its own law, speci cally on the law of]Y,,. Details underpinning the choices
of the error covariance matric§s .} and{ ,} are given in subsectior&s2 and2.3 the
matrices are chosen so that, for linear Gauspialems, the prediction and analysis steps
follow equations @) and (L0), and the converged mean and covariance of the resulting Itering
distribution for ,|Y, under the prediction stef4) and the observation model%) match the
posterior mean and covariance.

2.2. Gaussian approximation

Denote by ,,, the conditional density of,|Y,. We rstintroduce a class of conceptual Kalman
inversion algorithms which approximate by considering only rst and second order statis-
tics (mean and covariance), and updajesequentially using the standard prediction and
analysis stepsApb, 46]: , n+ 1, and then py 1 n+ 1, Where 41 is the distribution of

n+ 1| Yn. The second analysis step is performed by invoking a Gaussian hypothesis. In sub-
sequent subsections, we then apply diffemrmethods to approximate the resulting maps on
measures, leading to unscented, stochastic ensemble Kalman and adjustment/transform square
root Kalman lters.

In the prediction step, assume that N (m,, C,), then under equationld), n+1=

N (Mn+ 1, Chs 1) is also Gaussian and satis es

M1 = E[ nea|Yn] = my Chr1= CoV[ n+1|Yn] = Cp + n+ 1. (29)

In the analysis step, we assume that the joint distributioh gf 1, Xn+ 1}| Yo can be approxi-
mated by a Gaussian distribution

X
Myt 1 Cn 1 n+ 1
y x T
XX
Cn+ 1 n+ 1

, 20
X 1 (20)

where



Inverse Problems 38 (2022) 125006 D Z Huang et al

X 1= E[Xn+ 1| Ya] = E[F ( n+ 1)[ Y],
Cni 1= COV[ n+ 1, Xn+ 1|Yn] = COV[ n+ 1, F ( n+ 1)|Yn], (21)
mr 1= Cov[Xne 1|Yn] = COV[F ( ne 0)|Ynl + e 1

These expectations are computed by assuming Y, n+ 1 @and noting that the distribution
of ( n+ 1, Xn+ 1) iS then de ned by {4) and (L5). This corresponds to projectitthe joint distri-
bution onto the Gaussian which matches isam and covariance. Conditioning the Gaussian
in equation20) to nd  n+ 1l{ Yn, X, 1} = n+ 1] Yar 1, gives the following expressions for the
meanmy. 1 and covarianc€,. 1 of the approximation to,, ;:

My 1= M1+ Cl(C )3 (K 1 S Xne 1), (22a)
Cor1= Cor1S CY4(CR)3CE S (22b)

Equations 19) to (21), (229 and @2b) establish a class of condepl algorithms for appli-
cation of Gaussian approximation to solve the inverse problems. To make implementable
algorithms a high level choice needs to be made: whether to work strictly within the class
of Gaussians, that is to imposg N (m,, Cy), or whether to allow non-Gaussiap but to

insist that the second order statistics of the resulting measures agree with equEd)dos (
(2D, (229 and @2h). In what follows the UKI takes the rst perspective; all other methods
take the second perspective. For the UKI the method views equatien®((21), (229 and

(22b) as providing a nonlinear mapg, C,)  (Mh+ 1, Chs 1); this map is then approximated
using quadrature. For the remaining methods a mean- eld dynamical system is used, which
is non-Gaussian but matches the aforementioned Gaussian statistics; this mean- eld model is
then approximated by a nite particle systeit9]. The dynamical system is of mean- eld type
because of the expectations raedito calculate equation2(@), (21) and (8). The continu-

ous time limit of the evolution for the mean and covariance is presented in appenitiis is
obtained by letting 0.

Remark 1. Consider the case, wherg = N (m,, C,,) is Gaussian. With the speci ¢ choice
of{ .}, wehave n+1= N (M, lgl C,) from the prediction step equatiohd), and hence
the Gaussian density functionsand . 1 ful Il equation (9). With the extended observation
model (L5) and the speci c choicedf .}, the analysis step without Gaussian approximation
can be written as

( n+ 1|Yn+ 1) ( n+ 1|Yn) (X;H. ]_l n+ 1, Yn)
o 1( e 1)eé R( n+ 1Y)
nt1( e 1) (e 1) (23)

and hence the density functions. ; and ,, ; ful ll equation (10). Note, however, that,, ;

is not, in general, Gaussian, unlgsss linear, the case studied in the next section. In the
nonlinear case, we employ Kalman-based methodology which only employs rst and second
order statistics, and in effect projects ; onto a Gaussian.

5We use the term eprojectinge as nding the Gaussfawhich matches the rst and second moments of a given
measure corresponds to nding the closest Gaussfa with respect to variation in the second argument of the
(nonsymmetric) Kullback... Leibler divergent8, theorem 4.5].

10
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2.3. Linear analysis

In this subsection, we study the algorithm in the context of linear inverse problems, for which
G( ) = G for some matrixG. Furthermore we assume thay;, is Gaussiam (ro, o) and
recall that the observational noiseNs(0, ). Thanks to the linear Gaussian structure the
posterior is also Gaussian with mean and precisions given by

Myost= o+ G’ S1G+ $t SigT S1y$ Gry) and
CSi=G" Slg+ L (24)
Furthermore, the equatiof1) reduce to
Xn+1= Fy, Cxy=Cn1F', and
XX = FCu1F'+ 1 whereF = (|3
We note that
Fv, Fv v 2 (25)
The update equation22g and 2b) become
My 1= M+ CowdFT(FChuaF T+ e )M (xS Fiy), (26a)
Cre1= Cre1S Coe tFT(FCreaFT+ e )S'FChey, (26b)
with Cnhe 1= Ch+  n+ 1. We have the following theorem about the convergence of the

algorithm:

Theorem 1. Assume that the error covariance matrices are as de ned in equdfién
with 0 < < 1land that the prior covariance matrixo  0and initial covariance matrix
Co 0. Theiteration for the conditional meamrand precision matrix €1 characterizing the
distribution of ,|Y, converges exponentially fast to limit mCS1. Furthermore the limiting
mean m and precision matrix €' = G >!G+ 3! are the posterior mean and precision
matrix given by(24).

Proof. With the error covariance matrices de ned in equatit8)( the update equation for
{C,} in equation 26b) can be rewritten as
CnS+11 =F' S,%+ 1F+ Cot i
= G Slg+ $t+ (@S )cit (27)
We thus have a closed formula f6¢ *:

csl= 185318 )" 6" Sle+ St + (1S )cst (28)

o Ux
i

Since 0< < 1 this leads to the exponential convergence Oft = GT S1G +
~ n
Chostgiven by @4).
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Since we have made a choice independentwé write = 4 1. Thus equation=7)
and @8) lead to
T $1 51 T 81 _1s T 81 51
F F Cy, F F+ + where , = F F+Cg™. (29)

The update equation ofi, in equation 263 can be rewritten as
My 1= Mo+ Cpe i SH(x S Fmy). (30)

Note thatB:= FT SIFis symmetric and that, as a consequencebf {ogether with the fact
that 0, it follows thatB  0; thus we have thatS C,. 1B has the same spectrum as

| § B2C,, 1B2. Using the upper bound d®h. 1 appearing in equatior2g), the spectral radius
of the update matrix in equatio() satis es

(18 CiFT SIF)= (1S Cn1B)

| § B2C,, 1B?

1§ B2 B+ , °'B?

= lé 0y (31)

where o (0, 1). Hence, we deduce that,} converges exponentially to the stationary point
m , which satis esFT (xS Fm ) = 0. Using the structure df and  the limiting mean
can be written as the posterior mean givenZd){

m =rg+ G' glG"' OS]' S1GT SI(Yé Gro): Mpost: (32)

Remark 2. Although this theorem applies only to tlieear Gaussian setting we note that the
premise of matching only rst and second order moments is inherent to all Kalman methods.
We demonstrate numerically in sectidrthat application of the Itering methodology based

on the proposed choices of covariances leads to approximated mean and covariances which are
accurate for nonlinear inverse problems.

Remark 3. We note that the convergence of the means/covariances of the Kalman lter is
a widely studied topic; and variants on some of our results can be obtained from the existing
literature, for example, the use of contraction mapping arguments to study convergence of the
Kalman lter is explored in 8O, 81].

2.4. Nonlinear Kalman inversion methodologies

To make practical methods for solving nonlinear inverse probléneut of the foregoing,

the expectations (integrals) appearing in the prediction di@yn§ well as in the analysis step

via equation 21) need to be approximated appropriately. While equati®) ¢an be imple-
mented via a simple rescaling of the covariancérinar ensemble, respectively, (we use both)

the analysis step can be implemented using nonlinear Kalman lter (we use a variety).

In the present work, we focus on both the unscented and EnKF, which lead to the Bayesian

12
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implementations of unscented Kalman inversion (UKI), stochastic ensemble Kalman inver-
sion (EKI), ensemble adjustment Kalman inversion (EAKI), and ensemble transform Kalman
inversion (ETKI). We now detail these meth8ds

2.4.1 Unscented Kalman inversion (UKI). UKl approximates the integrals in equati@iy by
means of deterministic quadrature rules; this is the idea of the unscented trars8p6%5] [
We now de ne this precisely in the versions used in this paper.

Definition 1 (Modified unscented transform [ 72]).  Consider Gaussian random vari-
able N (mC) RN .De neJsigmapoint{ 1}}2§according to the deterministic formu-
lae

0= m l=m+[ ClIn[j] @ j JS1); (33)

here [ C] is the Cholesky factor o and Iy [:, j] is the jth column of the matriXy

RN *(51_ Consider any two real vector-valued functidhg-) andF ,(-) acting onRN . Using

the sigma points we may de ne a quadrature rule approximating the mean and covariance of
the random variables;( ) andF,( ) as follows:

E[Fi()] F (9
JS1 ) )
Cov[F1( ),Fa( ] aFi( )SEFi() Fa h)SEF,() . (34)
=1

In the present work, we consider the following two variants,
€ UKI-1 (J= N + 2)[12 82]. Iy is de ned recursively as

.1 1

= S 35
! 2a 2a (35)

0

los 5

lg = ast 0 , 2 d N
1 1 Sd
add+ 1) 7 add+ 1) add+ 1)
(36)
and the weight parameter is choseraas 4(NN+ 1"

6 Recall the discussion in subsectibr8 about distinction between optimization and Bayesian implementations of all
these methods.

13
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€ UKI-2(J= 2N + 1)[72). Iy isdenedas
1 g 1
2a 2a 1
S
Iy = 2a 2a (37)
1 < 1
2a 2a

and the weight parameter is choseraas max 3, . }-

Consider the Gaussian approximation algorithm de ned by equatib®)stg (21), (229
and @2b). By utilizing the aforementioned quadrature rule, the iteration procedure of the UKI
becomes:

€ Prediction step:

1
Mh+ 1= My Chi1= 18 Ch. (38)
€ Generate sigma points:
Pe1= M, 1= Mt [ Codlln ] (@ j 38D (39)

€ Analysis step:

xa=F(Ly 0 | 38y,
0

Xn+ 1= Xpt 19
JS1 _ )
o= al !l S me)d, ;S X )T
n+ 1 n+1 + 1 n+ 1 n+1) »
=1
J81 ) )
éi 1= a(XﬂH 1S Xn+ 1)(Xﬂ1+ 1S Xn+ l)T + 1

=1
XX

M1 = My g+ Gl (G 1)S1(X S Xn+ 1),
Cw1= Car1 S CACDICHT. (40a)

2.4.2. Ensemble Kalman inversion. Ensemble Kalman inversion represents the distribution at
each iteration by an ensemble of parameter estin{aﬂp}#z , and approximates the integrals
in equation 21) empirically. We describe three variants on this idea.

Stochastic ensemble Kalman inversion (EKIThe perturbed observations form of the
ensemble Kalman Iter§3] is applied to the extended mean- eld dynamical systéd) and
(15), which leads to the EKI:

14
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€ Prediction step:

Me1= My 1= Mt (1Sm). (41)
€ Analysis step:
: : 17 .
XI!1+ 1= F ( g\+ 1) Xnt 1 = J Xgl+ 1 (42a)
=1
1 -
ni 1= & :1+ 1 S My 1)(X:1+ 1 S Xn+ 1)Ty (42b)
JS1 =1
1 v .
:i 1= & (Xr]1+ 1S Xn+ 1)(X;Jq+ 1S Xn+ l)T + 1 (42c)
JS1 =1
, : s1. L
r]1+1: rJ1+1+Cn§1 éil (XSXIJ1+1S rJ1+1a (42d)
17
Mhe1= ] bor (42e)

Here the superscrigt= 1,. .., Jis the ensemble particle index, aqbr ; N (0, n+1)
are independent and identically distributeshdom variables. The prediction step ensures
the exactness of the predictive covariance equafié (

Remark 4. The prediction step4@) is inspired by square root Kalman Iter$3, 64,

66, 84] and covariance in ation 85]; these methods are designed to ensure that the mean
and covariance of ﬂH 1} matchm., 1 and Cy+ 1 exactly. This is different from traditional
stochastic ensemble Kalman inversion implementation, where i.i.d. Gaussian n,bj@es

N (0, n+1) are added. In the analysis stef?), we add noise in th¢ er 1} update 420
instead of the( er1+ 1} evaluation 428); this ensures tha€)y, (429 is symmetric positive

de nite.

Remark 5. As a precursor to understanding the adjustment and transform lters which fol-
low this subsection, we show that the EKI does not exactly replicate the covariance update
equation 22b). To this end, denote the matrix square raits:, Zns 1 RN *? 0f Che 1, Cor 1
andY . 1 as follows:

1 - - .
Znv1 = 181 r}+1Smn+1 nz+1Smn+1 }]1+1smn+1 )

1 1 S 2 S J S
Zns 1 181 1S Mir1 1S M ... 1S M1, (43)
Yn+]_: 1v X%+léXn+]_ Xﬁ+1éXn+1 X‘r].|+1éXn+]_.

JS1

Then the covariance update equatidl does not hold exactly:

15
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Cre1 8 CXUCEDSICE T = ZowaZh 1 8 ZnwaY T,
X (Yoe1Ypea+ o 1)SlYn+ 1Zpiq
= Zn+ 1ZrT+ 1= Cn+ 1. (44)

Ensemble EAKI Following the ensemble adjustment Kalman Iter proposeddd,[the
analysis step updates particles detigristically with a pre-multiplieiA,

S M= ACL 1S M), (45)
HereA= PDzUDzDS2PT with
SVD: Zn.1= PD2VT,

) 1 (46)
SVD: VT I+ YL, 5L Y1 V=UDUT,

where botlD andD are non-singular diagonal mates, with dimensionality rankz(. 1), and
Z.+1 andY . 1 are de ned in equatior4Qd). The analysis step becomes:

€ Analysis step:

S1
Myt 1= Mher + Cni 1 C:: 1 (XS Xnt 1), (47a)

L= Mt ACL S myy). (47b)

Remark 6. It can be veri ed that the covariance update equatietf holds:

_ T
Chr1= Znv1Zniy

AZn+ 1Z;|1—+ 1AT

PD2UDUTD:P

- S1
T S1 T
Zney |+ Yn+1 N+ 1Yn+1 Zn+1

S T T S1 T
Zno1 1S Yo a(Yne Y1t o)™ Y1 Zpos

Cre 1S CX1(CXSIC KT (48)

ETKI. Following the ensemble transform Kalman lter proposedid b6, 84], the analysis
step updates particles deterministically with a post-multiglier

Zow1= ZneaT. (49)
HereT = P( + 1)SzPT, with

SVD: Ymi1 Sk Yn1=P P (50)
The analysis step becomes:

16
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€ Analysis step:

X XX

$1
My1=Mu1+ Ciy Cip (XS Xne 1), (51a)

Zn+ 1 = Zn+ ]_T. (Slb)

Remark 7. It can be veri ed that the covariance update equat@2iy holds:

_ T
Chr1= Znv1Zniy

Zw TT'Z) |

Zniy |+ P PT SlZI+1

- S1
T S1 T
Zoen |+ Yn+1 N+ 1Yn+1 Zn+1

- T T S1 T
Zor1 1SYpq(YneaYoe1+t e 1)” Yor1 Zpog

Cre 1S CX4(CXSIC KT (52)

Particles (ensemble members) updated by the basic form of the EKI algorithm through
iterates are con ned to the linear span of the initial ensemBfe $7]. The same is true for
both EAKI and ETKI:

Lemma 1 For both EAKI and ETKI, all particles lie in the linear spaéespanned by m
and the column vectors 0§Z

Proof. We will prove thatm, and column vectors of,, are inA by induction. We assume
thisholdsforaln k. Sinceme1 = mcandZis 1= &' Z (see equationd(l)), m: 1 and

column vectors oy, ; are inA. Combining the mean update equatio#gd and 619 and
the factthaC/} | = Zus 1YI+ 1, We havam, 1 isin A. For EAKI, since the pre-multiplieA =

PDzUD:DS?2 PT, andP is the left compact singular matrix @. 1, it follows that the column
vectors ofA lie in A; furthermore, the square root matrix update equatiai) Zy+ 1 = AZ,
has implication that the column vectorsZ4y ; lie in A. For the ETKI, the square root matrix
update equatiorb{Lb) implies that the column vectors @f. ; lie in A. Sincem, and column
vectors ofZ, are inA, so are the particlels }}7. ;.

3. Variants on the basic algorithm

In this section, we introduce three strategies to make the novel mean- eld based methodology
more ef cient, robust and widely applicable in real large-scale problems. In subsé&cfion

we introduce low-rank approximation, in which the parameter space is restricted to a low-
rank space induced by the prior; subsect®f introduces a bi- delity approach in which

multi delity models are used for different ensemble members; and box constraints to enforce
pointwise bounds on are introduced in subsecti@3.
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3.1 Low-rank approximation

When using ensemble methods for state estimation, the dimension of the ensemble space
needed for successful state esition may be much smaller thah; a useful rule of thumb is
that the ensemble space needs to be rich enough to learn about the unstable directions in the
system. When using ensemble methods for inversion the situation is not so readily understood.
The EKI algorithm presented here is limited to nding solutions in the linear span of the ini-
tial ensemble5, 57] and we have highlighted a similar property for the EAKI and ETKI in
lemmal. While localization is often used to break this prope&#[its use for this purpose is
somewhat ad hoc. In this work we do not seek to break the subspace property. Indeed here we
exploit low rank approximation within ensemble inversion techniques, a methodology which
leads to solutions restricted to the linear span of a small number of dominant modes de ned
by the prior distribution.

Theoreml requires that the initial covariance mat@¢ 0 be strictly positive de nite.
To satisfy the assumption, the UKI requifds+ 2 or 2N + 1 forward problem evaluations
and the storage of dd x N covariance matrix, and the EKI, EAKI and ETKI requiD¢N )
forward problem evaluations and the storag®@N ) parameter estimates; some of the impli-
cations of these effects are numerically veri ed in sectdoh Therefore, they are unaffordable
for eld inversion problems, wher&l is large, typically from discretization of thid =
limit. However, many physical phenomena or systems exhibit large-scale structure or nite-
dimensional attractors, and in such situatioresrttodel error covariance matrices are generally
low-rank; these low-rank spaces are spanned by, for example, the dominant Karhunen...Loéve
modes for random elds §7, 88] or the dominant spherical harmonics space on the
sphere 3, 89]. We introduce a reparameterization strategy for this framework in order to
leverage such low-rank structure when presantl thereby to reduce both computational and
storage costs.

Given the prior distributioN (ro, o), we assume g is alow-rank matrix with the truncated
singular value decomposition

o UDgU.

HereU = {ug, Uy, ..., un} is theN;-dominant singular vector matrix arig is the singular
value matrix. The discrepancys rg is assumed to be well-approximated in the linear space
spanned by column vectors bf Hence, the unknown parameters can be reparameterized as
follows:

=TIp+ (iU
i=1

The aforementioned algorithm is then applied to solve for the vectof (1), @),--., n)l,
which has prior mean 0 and prior covariarigg This reduces the computation and memory
cost fromO(N ) andO(N?) to O(N,) andO(N;N ), whereN; is the rank of the covariance
matrix.

More advanced approaches tdrexting the low-rank space exist, including active subspace
methods 90] and likelihood-informed subspace metho@4,[92]; however, they all require
derivatives and so we do not pursue them here.

3.2. Bi-fidelity approach

For large-scale scienti ¢ or engineeringgimems, even with a small parameter numbler
(or rank numbeN;), the computational cost associated with thegsl ) (or O(N;)) forward
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model evaluations can be intractable; for exdarthe number of parameters may be small, but
the parameter-to-data map may require evaluation of a large, complex model. The bi- delity or
multilevel strategy93..96] is widely used to accelerate salimg-based methods; in particular

it has been introduced in the context of ensemble method37inand see 98] for a recent
overview of developments in this direction.

We employ a particular bi- delity approach for the UKI algorithm. In this approach,
low- delity models can be used to speed up forward model evaluations as follows. Con-
sider equation40g); evaluation of the mea@( ¢, ;) can be performed using a high- delity
model; meanwhile the othexS 1 forward evaluations employed for covariance estimation,
{G( 1. 1)} 21, can use low- delity models.

3.3. Box constraints

Adding constraints to the parameters (for exséngissipation is non-negative) signi cantly
improves the robustness of Kalman inversi®9.[101]. In this paper, there are occasions where
we impose element-wise box constraints of the form

0 oI min max-

These are enforced by change of variables writirg () where, for example, respectively,

— — ) maxé min
(= ep() or ()= mn+ 70

The inverse problem is then reformulated as
y=G( ()+

and the proposed Kalman inversion methods are employedavi(@

4. Numerical experiments

In this section, we present numerical experiments demonstrating application of Itering meth-
ods to the novel mean- eld dynamical system (equatidds, (15) and (L8)) introduced in this

papef; the goal is to approximate the posterior distribution of unknown parameters or elds.
The rst subsection lists the ve test problems, and the subsequent subsections consider them
each in turn. In summary, our ndings are as folldws

€ The proposed Kalman inversion methods based on (equatldhs(L5 and (L8)) are
more ef cient than transport/coupling methods basedif) (i.e., iterative Kalman lter
methods) on all the examples we consider. Tleggaove the sensitivitio the initialization
and, relatedly, they converge exponentially fast.

€ The proposed Kalman inversion methods with deterministic treatment of stochastic terms,
speci cally UKI and EAKI, outperform other methods with stochastic treatments, such
as EKI, EKS (with Euler...Maruyama discretization) and CBS. They do not suffer from
the presence of noisy uctuations and achieve convergence for both linear and nonlinear
problems.

"We x = 1/ 2 based on the parameter study presented in appénaid iterateO (10) iterations to demonstrate
convergence. In practice, adaptive time steppingjinorement-based stopping criteria can be applied.
8The footnote from subsectiah4, appearing before the bulleted list of contributions, applies here too.
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€ The methodologyis implementable for large-scale parameter identi cation problems, such
as those arising in climate models.

4.1 Overview of test problems

The ve test problems considered are:

(a) Linear-Gaussiantwo-parameter model problem: this problem serves as a proof-of-concept
example, which demonstrates the convergesf the mean and the covariance as analyzed
in subsectior2.3

(b) Nonlinear two-parameter two-point boundary value problem: this example appeadks in [
an important paper which demonstrates that the mean eld limit of ensemble Kalman
inversion methods may be far from the true posterior; itis also used as a test case in several
other papers, such agg, 107. We show that by applying Kalman Itering techniques
to the extended mean- eld dynamical system (equatiddy, (15 and @8)), we obtain
methods which obtain accurate poste@pproximation on this problem.

(c) Hilbert matrix problem: this high dimerwial linear-Gaussian problem demonstrates the
ability of the proposed Kalman inversionetiodology to solve ill-conditioned inverse
problems. In addition to testing the novel meatd approach introduced in this paper, we
also study the effect of the ensemble size oreertde Kalman inversion, and in particular,
the ensemble adjustment/transform Kalman inversions are examined in this context.

(d) Darcy ow inverse problem: this is an in nite dimensional eld inversion problem
(see BO] and the references therein); in addition to testing the novel mean- eld approach
introduced in this paper, we also demonstrate the low-rank approximation strategy in
subsectior8.1

(e) Idealized global climate model: this 3D Navier... Stokes problen¥, Zderfbackground
and references; in addition to testing th@val mean- eld apprach introduced in this
paper, we also demonsteghe bi- delity approach introduced in subsecti®r2.

For the rst and third problems, the Gaussian structure means that they are exactly solv-
able and this provides a benchmark against which we compare various methods. Markov chain
Monte Carlo methods (MCMC), speci cally the random walk Metropofig][and precondi-
tioned Crank...Nicolso2§] methods, are used as the benchmark for the second and fourth
problems respectively. Problem ve is too large for the use of MCMC, and showcases the
potential of the methodologywdied here to solve problems otherwise beyond reach.

In the rst two tests, we compare the proposed Kalman inversion methods (EKI, UKI,
EAKI, ETKI applied to equationsl{), (15) and (L8) with other recently proposed Gaussian
approximation algorithms, including the ensemble Kalman sampler (EKSYF],° and the
consensus-based sampler (CBS), [53, 103..105.%% We also compare with variants of iter-
ative Kalman Iter methods, which seek to deform the prior into the posterior in one time
unit (transport/coupling) using a nite number of intermediate steps (see appBhtiased
on (12). They include iterative unscented Kalman Iters (IUKF-1, IUKF-2), IEnKF, iterative
ensemble adjustment Kalman lter (IEAKF), and iterative ensemble transform Kalman Iter
(IETKF) [55, 56, 106, 107] [ 108 algorithm 3]. Having shown the superiority of Itering based
on our novel mean eld dynamical system, we consider only this approach in the remaining
examples. In the third test, we study the effect of the ensemble size on the proposed Kalman

9We follow the implementation in7[5], which employs adaptive time-stepping.
10we follow the implementation ing3], setting = 0.0 and adaptively updating with p = 0.5.
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inversion methods, in particular for the EAKI/ETKI approaches to ltering, comparing with
the UKI. In the fourth and fth tests, we demonstrate the effectiveness of the proposed Kalman
inversion methods for large-scale inverse protdexmd incorporate the low-rank and bi- delity
approaches.

4.2. Linear two-parameter model problem
We consider the two-parameter linear inverse problézh¢f nding R? fromy given by
y=G + . (53)

Here the observation error noise isN (0, 0.1%1). We explore the following two scenarios

€ Over-determined system

3 12
y= 7 G= 3 4 i N (O1); (54)
10 5 6
€ Under-determined system
y= 3 G=1 2 ior N (0,1). (55)

We apply various Kalman inversions to our proposed novel mean- eld dynamical system,
including UKI-1 @ = 4), UKI-2 (J = 5), EKI, EAKI, and ETKI; we compare with pre-existing
coupling/transport based iterative Kalman lters, including IUKRI®( 4), IUKF-2 (J = 5),

IEnKF, IEAKF and IETKF all withJ = 10 ensemble members; and we compare with EKS,
and CBS, again all witld = 10. All algorithms are initialized at the prior distribution; note
however that the methods we introduce in this paper, and EKS and CBS, do not require this
and indeed are robust to the use of different initializations. The iterative Kalman lters are
discretized with = 310, and further correction (see appen@@ix) is applied on the initial
ensemble members for the exactness of the initialization, except for the IEA#kce the
posterior distribution is Gaussian, we can compute the reference distribution analytically. The
convergence of the posterior mean and posterior covariance are reported in lgames.
Because we use the same number of steps for all algorithms, and commensurate numbers of
particles, the evaluation cost of all the methods studied are comparable; the size of the error
discriminates between them.

For both scenarios, UKI-1, UKI-2, EAKI, and ETKI converge exponentially fast. [IUKF-1,
IUKF-2, IEAKF, and IETKF reach exact posterior mean and covariance maffixat. How-
ever, IEAKF does not converge due to the error introduced in the initialization. EKl and IEnKF
do not converge, and suffer from the presence of random noise introduced in the analysis step.
EKS and CBS do not converge, and suffer from the presence of random noise and the nite
ensemble size.

4.3. Nonlinear two-parameter model problem

Consider the one-dimensional elliptic boundary-value problem

S g PG PY =1 x [0.1] 56)

with boundary conditiong(0) = 0 andp(1) = (). The solution for this problem is given by
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Figure 1. Linear two-parameter model problems: convergence of posterior mean (top)
and posterior covariance (bottom) for the over-determined system.
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Figure 2. Linear two-parameter model problems: convergence of posterior mean (top)
and posterior covariance (bottom) for the under-determined system (bottom).
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The Bayesian inverse prabh is formulated as nding  R? fromy given by
y=G)+ , = Eli and N (0,012). (58)
2

The observations comprise pointwise measuremermisnfl we consider well-determined and
under-determined cases:

€ Well-determined system

- P025,) _ 275 _ 0
)= K075 ) Y= 797 eir N qgp ] (59)
€ Under-determined system the observations
0
G( )= p(0.25, ) y= 275 pior N 100 o (60)

The reference posterior distribution is approximated by the random walk Metropolis
algorithm with a step size 1.0 andx510° samples (with a 10sample burn-in period). We
compare the UKI-1J = 4), UKI-2 (J = 5), EKI, EAKI, and ETKI applied to (equationg4),

(15) and (18)), iterative Kalman lIters, including IUKF-1J= 4), IUKF-2 (J= 5), IEnKF,
IEAKF, IETKF all with J= 50 ensemble members, applied 1@y, and the EKS and CBS
methods, also witll = 50. All algorithms are initialized at the prior distribution. The itera-
tive Kalman lters are discretized with = 310, and further correction (see appen@&iR) is
applied on the initial ensemble members for the exactness of the initialization.

Posterior distribution approximations obtained by different algorithms, all at the 30th itera-
tion, are depicted in gure8 and4. Two common qualitative themes stand out from these
gures: the iterative methods based on coupling/transport have dif culty covering the true
posterior spread, especially in the under-determined case, when compared with the new
methodologies based on our novel mean- eld dynamical system; and application of ensemble
transform methods in either coupling/transport or mean- eld dynamical system suffers from a
form of collapse. The rst point may be seen quantitatively; the second does not show up so
much quantitatively because collapse is in a direction in which there is less posterior spread.
We now turn to quantitative comparisons. Again, because we use the same number of steps for
all algorithms, and commensurate numbers of particles, the evaluation cost of all the methods
studied are comparable; the size of @reor discriminates between them.

The convergence of posterior mean and posterior covariance are reported inSgumds.

For both scenarios, UKI-1, UKI-2, and EAKI converge exponentially fast at the beginning and
then atten out, since the posterior is not Gaussiéd}.[The ETKI suffers from divergence for

the under-determined scenario, and for this test, ETKI is less robust compared with UKI and
EAKI. As in the linear two-parameter model problems (see subsedt®nEKI, EKS, CBS,

and IEnKF suffer from random noise and nite ensemble sizes. Moreover, Kalman inversions,
especially UKI and EAKI, outperform iteratii€éalman lIters, as measured by accuracy for
commensurate cost, for these nonlinear tests.

4.4. Hilbert matrix problem

We de ne the Hilbert matrixG RN *N by its entries

1
23



Inverse Problems 38 (2022) 125006 D Z Huang et al

Figure 3. Nonlinear two-parameter model problem: posterior distribution approximated
at the 30th iteration for the well-determined system. Blue dots represent the reference
posterior distribution obtained by MCM@-axis is for (1) andy-axis is for ().

Figure 4. Nonlinear two-parameter model problem: posterior distribution approximated
at the 30th iteration for the under-determined system. Blue dots represent the reference
posterior distribution obtained by MCM@-axis is for (1) andy-axis is for ().

with N = 100. We consider the inverse problem

y=G N (0,01%) pior N (O,1). (62)
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Figure 5. Nonlinear two-parameter model problem: convergence of posterior mean
(top) and posterior covariance (bottom) for the well-determined system.
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Figure 6. Nonlinear two-parameter model problem: convergence of posterior mean
(top) and posterior covariance (bottom) for the under-determined system.

We no longer study iterated Kmban methods arising from coupling/transport as the preced-
ing examples show that they are inef cient. Furthermore EKI, EKS, and CBS do not converge
and suffer from random noise and/or nite ensemble sizes; these results are not shown. Instead,
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10° —% UKI-1 (J)=102)
—e— UKI-2 (J=201)
& EAKI (J=100)
—~- EAKI (J=101)
—+— EAKI (J=500)
-0+ ETKI (J)=100)
—o—- ETKI (J=101)
—— ETKI (J=500)

—
o
D

1072

-
o
&

1074

107°

Rel. mean error
=
o
&
Rel. covariance error

1077
1078

10-10

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iterations Iterations

Figure 7. Hilbert matrix problem: convergence of posterior mean (left) and posterior
covariance (right).

we focus on the effect of the ensembleesan EAKI and ETKI, comparing with UKI. To be
concrete, we apply EAKI and ETKI witd= N, N + 1 and 500, and UKI-1 and UKI-2.
Again, we initialize all algorithms at the prior distribution.

We compute the reference distribution analytically. The convergence of posterior mean and
posterior covariance are reported in gufeUKI-1, UKI-2, and EAKI and ETKI with more
thanN ensemble particles, converge exponentially fast. The relatively poor performance of
EAKI and ETKI with a smaller number of ensemble particles is related to thedresimce
EAKI and ETKI require at leastl + 1 particles to ensure that the initial covariance mafgx
is strictly positive de nite.

4.5. Darcy flow problem
The two-dimensional Darcy ow equation describes the pressurepétlin a porous medium
de ned by a parameterized, positive permeability eltk, ):
S (ax, ) p)= f(x, x D,
p(x) = O, X D.

(63)

Here the computational domain= [0, 1]%, Dirichlet boundary conditions are applied on
D, andf de nes the source of the uid:

4
1000 0 % |
4
fux2) = 2000 “<xp > (64)
6 6
5
3000 6 <x 1

The inverse problem of interest is to determine parametéthe eld a(-; ) from observa-
tion y,.;, Which consists of pointwise measurements of the pressure p@)ua 49 equidistant
points in the domain (see gur8), corrupted with observation error N (0,1). We now
describe hova depends on, and specify a standard Gaussian prior on
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Figure 8. The reference pressure eld with 4@@distant pointwise measurements of
the Darcy ow problem.

We write

log a(x, )= o 1 oix), (65)
| K

whereK = Z* x Z*\{ 0,0}, and
2 cos( 11x1) lb=0
0= 2 cos( lo%) L=0 ., 1=(2P+ 25 (66)
2 cos( I1x1) cos( l2x2) otherwise

and gy N (0,1)i.i.d. The expansion equatiods) can be rewritten as a sum ou&f rather
than a lattice:

log a(x, )= ©w Kk k(X), (67)
K z+

where the eigenvalueg are in descending order. We note that these considerations amount to
assuming that log(x, ) is a mean zero Gaussian random eld with covariance

C= (é + Z)Sd, (68)

with S the Laplacian oD subject to homogeneous Neumdmoundary conditions on the
space of spatial-mean zero functions; hyperparametignotes the inverse length scale of
the random eld and hyperparametidetermines its Sobolev and Hoélder regularity, which is
dS 1in our two dimensional settin@®(].

In this work, we take = 3 andd = 2. In practice, we truncate the sui7f to N terms,
based on the largeBt eigenvalues, and hence RN . The forward problem is solved by a
nite difference method on a 88 80 grid. To create the daya; referred to above, we generate
atruth random eld log(x, ref) WithN = 128 and s N (0,1%%9).
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Figure 9. Darcy ow problem: the relative error of the permeability eld, the opti-
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Figure 10. The estimated KL expansion parametefsand the associated® con -
dence intervals obtained by UKI-1 € 130), UKI-2 0 = 257), EAKI (J = 130), ETKI
(J = 130) and MCMC for the Darcy ow problem.

The benchmark posterior distribution is approximated by the preconditioned
Crank...Nicolson algorithm withx210° samples (with a & 10° sample burn-in period)
with the step size 0.04. Since the precedingneples have shown the bene ts of using UKI,
EAKI and ETKI over all other methods considered, we compare only these approaches with
the benchmark. Speci cally, we appUKI-1, UKI-2, and EAKI and ETKI withJ= N + 2,
again initialized at the prior distribution.

The convergence of the relatite error of the mean of the lagy eld, the optimization
errors, and the Frobenius norm of the estimated posterior covariance, as the iteration pro-
gresses, are depicted in gu®e This clearly shows that all four Kalman inversion techniques
converge within 10 iterations.

Figure10shows the properties of the converged posterior distribution, after the 10th itera-
tion, comparing them with MCMC and with the truth (referred to as *Truthe). The information
is broken down according to recovery of the;)}, visualizing only the rst 64 modes, since the
statistical estimates of other modes obtained by MCMC and by our Kalman inversion method-
ologies are close to the pridt (0, 1),the data does not inform them. We rst note that the
truth values lie in the con dence intervals determined by MCMC, with high probabilities. Sec-
ondly, we note that all four Kalman methods reproduce the posterior mean and con dence
intervals computed by MCMC accurately. The estimated log-permeability elda gl the
truth are depicted in gurd1l The mean estimations obtained by the MCMC and these Kalman
inversions match well, and they both capture the main feature of the truth log-permeability eld.
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Figure 11 The truth log permeability eld log, and log permeability elds obtained by
MCMC, UKI-1 (J = 130), UKI-2 ( = 257), EAKI (J = 130), ETKI J = 130) (left to
right).
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Figure 12. The estimated KL expansion parametegsand the associated® con -
dence intervals obtained by UKI-1, UKI-2, EAKI, ETKIwith= 31 ensemble members
and MCMC for the Darcy ow problem.

Remark 8. In practice, for many inversion problems for elds, the realistic number of
ensemble members is much smaller than the dimension of the state space. To probe this setting,
we repeat the test by using UKI-1, UKI-2, ETKI, and EAKI wilh= 31 ensemble members;

for UKI-1 and UKI-2, we invert for the rst 29 and 15 coef cients ¢f (}, respectively, and

for ETKI and EAKI we invert for all 128 coef ciats. The estimated KL expansion parameters

{ @} for the log-permeability eld and the associated53 con dence intervals obtained

by MCMC, and different Kalman inversions at the 10th iteration, are depicted in g@re

The mean and standard deviation of the coifris associated with these dominant modes
obtained by both UKIs match well with those obtained by MCMC. The results indicate that
the etruncate then inverte strategy used by UKIs outperforms the edirect inversione strategy,
used here by EAKI and ETKI, when only small ensemble numbers are feasible.

4.6. Idealized global climate model

Finally, we consider using low- delity model techniques to speed up an idealized global cli-
mate model inverse problem. The model is based on the 3D Navier... Stokes equations, making
the hydrostatic and shallow-atmosphere approximations common in atmospheric modeling.
Speci cally, we test on the notable Held...Suarez test d&€k jn which a detailed radia-

tive transfer model is replaced by Newtoniates@tion of temperatures toward a prescribed
eradiative equilibriumsTey( , p) that varies with latitude and pressure. Speci cally, the
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thermodynamic equation for temperatdre

DT « RT

¢S Cop Q (69)

(including advective and pressure work terms) contains a diabatic heat source
Q= Skr( ,p.ps) TS Te( D) . (70)

with relaxation coef cient (inverse relaxation time)

kr = ka+ (ks S ko) max 0, S b cod (71)
1S
Here, = p/ p,, pressurgnormalized by surface pressyug is the vertical coordinate of the
model, and
!
Teq= max 200K, 315KS T,si & ,log p‘z cog ;’O (72)

is the equilibrium temperature pro lggg = 10° Pais a reference surface pressure ard2/ 7
is the adiabatic exponent).

The inverse problem of interest here is to determine the paramkieks ( Ty, ;) from
statistical averages of the temperature &ld\Ve impose the following constraints:

0dayl< ko< 1dayl, 0day!< k< 1day?,
O0K< Ty< 100K, 0K< 2 < 50 K.

The inverse problem is formed as follow&?],
y=G()+ withG()=T(, ) (73)

with the parameterransformation

1 1
tkaks Ty, 2= 1+ exp(®)" 1+ exp( @)’
100 50

* 1+ exp(©)’ 1+ exp( @) )
enforcing the constraints. The observation map@igde ned by mapping from the unknown
to the 200 days zonal mean of the temperattijeaS a function of latitude () and height

(), after an initial spin-up of 200 days.
Default parameters used to generate the data in our simulation study are

ke = (40 day§?, ks = (4 dayf?, T, = 60K, .= 10K.

For the numerical simulations, we use the spectral transform method in the horizontal, with
T42 spectral resolution (triangular truncation at wavenumber 42, with 628 points on the
latitude-longitude transform grid); we use 20 vertical levels equally spaced With the
default parameters, the model produces an Earth-like zonal-mean circulation, albeit without
moisture or precipitation. The truth observation is the 1000 days zonal mean of the temperature
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Figure 13. Zonal mean temperature (left) and zonal wind velocity (right) obtained with
the T42 grid (top) and the T21 grid (bottom).

(see gurel3-top-left), after an initial spin-up, also of 200 days, to eliminate the in uence of
the initial condition. Because the truth obgaions come from an average 5 times as long
as the observation window used for parameter learning, the chaotic internal variability of the
model introduces noise in the observations.

To perform the inversion, we set the priggior N (0, 131). Within the algorithm, we
assume that the observation error satis esN (0 K, 3?1 K?). All these Kalman inversions
areinitialized with o N (0, 0.1?), since initializing at the prior leads to unstable simulations
atthe rstiteration. The bi- delity approach discussed in subsec8&is applied to speed up
both UKI-1 and UKI-2. Thesd S 1 forward model evaluations are computed on a T21 grid
(triangular truncation at wavenumber 21, with®824 points on the latitude-longitude trans-
form grid) with 10 vertical levels equally spaced in(twice coarser in all three directions).
They are abbreviated as UKI-1-BF and UKI-2-BF. The computational cost of the high- delity
(T42) and low- delity (T21) models are about four-CPU hour and 0.5-CPU hour, and there-
fore the bi- delity approach déctively reduces CPU costs. The 1000 days zonal mean of the
temperature and velocity predicted by the low-resolution model with the truth parameters are
shown in gurel3-bottom. It is worth mentioning there@signi cant discrepancies compar-
ing with results computed on the T42 grid ( guis-top). Whether these would be tolerable
will depend on the use to which the posterior inference is put.

The estimated parameters and associat®éd Zon dence intervals for each component at
each iteration are depicted in gutBl. Since the prior covariance is large and the problem
is over-determined it is natural to expect that the posterior mean should be close to the true
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