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Abstract
We consider Bayesian inference for large-scale inverse problems, where com-
putational challenges arise from the need for repeated evaluations of an expen-
sive forward model. This renders most Markov chain Monte Carlo approaches
infeasible, since they typically requireO(104) model runs, or more. Moreover,
the forward model is often given as a black box or is impractical to differ-
entiate. Therefore derivative-free algorithms are highly desirable. We propose
a framework, which is built on Kalman methodology, to ef�ciently perform
Bayesian inference in such inverse problems. The basic method is based on an
approximation of the �ltering distribution of a novel mean-�eld dynamical sys-
tem, into which the inverse problem is embedded as an observation operator.
Theoretical properties are established for linear inverse problems, demonstrat-
ing that the desired Bayesian posterior is given by the steady state of the law
of the �ltering distribution of the mean-�eld dynamical system, and proving
exponential convergence to it. This suggests that, for nonlinear problems which
are close to Gaussian, sequentially computing this law provides the basis for
ef�cient iterative methods to approximate the Bayesian posterior. Ensemble
methods are applied to obtain interacting particle system approximations of the
�ltering distribution of the mean-�eld model; and practical strategies to further
reduce the computational and memory cost of the methodology are presented,
including low-rank approximation and a bi-�delity approach. The effectiveness
of the framework is demonstrated in several numerical experiments, includ-
ing proof-of-concept linear/nonlinear examples and two large-scale applica-
tions: learning of permeability parameters in subsurface �ow; and learning
subgrid-scale parameters in a global climate model. Moreover, the stochastic
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ensemble Kalman �lter and various ensemble square-root Kalman �lters are all
employed and are compared numerically. The results demonstrate that the pro-
posed method, based on exponential convergence to the �ltering distribution of
a mean-�eld dynamical system, is competitive with pre-existing Kalman-based
methods for inverse problems.

Keywords: inverse problem, uncertainty quanti�cation, Bayesian inference,
derivative-free optimization, mean-�eld dynamical system, interacting particle
system, ensemble Kalman �lter

(Some �gures may appear in colour only in the online journal)

1. Introduction

1.1. Orientation

The focus of this work is on ef�cient derivative-free Bayesian inference approaches for large
scale inverse problems, in which the goal is to estimate probability densities for uncertain
parameters, given noisy observations derived from the output of a model that depends on the
parameters. Such approaches are highly desirable for numerous models arising in science and
engineering applications, often de�ned throughpartial differential equations. These include,
to name a few, global climate model calibration [1, 2], material constitutive relation calibration
[3…5], seismic inversion in geophysics [6…10], and biomechanics inverse problems [11, 12].
Such problems may feature multiple scales, may include chaotic dynamics, or may involve
turbulent phenomena; as a result the forward models are typically very expensive to evaluate.
Moreover, the forward solvers are often given as a black box (e.g., off-the-shelf solvers [13]
or multiphysics systems requiring coupling of different solvers [14, 15]), and may not be dif-
ferentiable due to the numerical methods used (e.g., embedded boundary method [16, 17] and
adaptive mesh re�nement [18, 19]) or because of the inherently discontinuous physics (e.g. in
fracture [20] or cloud modeling [21, 22]).

Traditional methods for derivative-free Bayesian inference to estimate the posterior
distribution include speci�c instances of the Markov chain Monte Carlo methodology [23…26]
(MCMC), such as random walk Metropolis or the preconditioned Crank…Nicolson (pCN)
algorithm [26], and sequential Monte Carlo methods [27, 28] (SMC), which are in any case
often interwoven with MCMC. These methods typically requireO(104) iterations, or more,
to reach statistical convergence for the complex forward models which motivate our work.
Given that each forward run can be expensive, conductingO(104) runs is often computation-
ally unfeasible. We present an approach based on the Kalman �lter methodology,which aims to
estimate the �rst two moments of the posterior distribution. We demonstrate that, in numerical
tests across a range of examples, the proposed methodologies converge withinO(10) itera-
tions, usingO(10) embarrassingly-parallel model evaluations per step, resulting in orders of
magnitude reduction in cost over derivative-free MCMC and SMC methods. We also demon-
strate favorable performance in comparison with existing Kalman-based Bayesian inversion
techniques.

In subsection1.2, we outline the Bayesian approach to inverse problems, describing vari-
ous approaches to sampling, formulated as dynamical systems on probability measures, and
introducing our novel mean �eld approach. In subsection1.3, we discuss pathwise stochastic
dynamical systems which realize such dynamics at the level of measures, and discuss �ltering
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algorithms which may be applied to them for the purposes of approximate inversion. Subsec-
tion 1.4 highlights the novel contributions in this paper, building on the context established
in the two preceding subsections. Subsection1.5 summarizes notational conventions that we
adopt throughout.

1.2. Bayesian formulation of the inverse problem

Inverse problems can be formulated as recovering unknown parameters� � RN� from noisy
observationy � RNy related through

y = G(� ) + �. (1)

HereG denotes a forward model mapping parameters to output observables, and� denotes
observational noise; for simplicity we will assume known Gaussian statistics:� � N (0,� � ). In
the Bayesian perspective,� andyare treated as random variables. Given the prior� prior(� ) on� ,
the inverse problem can be formulated as �nding the posterior� post(� ) on � giveny [29…31]:

� post(� ) =
1

Z(y)
eŠ� (� ,y)� prior(� ), � (� , y) =

1
2

� �
Š 1

2
� (y Š G(� ))� 2 (2)

andZ(y) is the normalization constant

Z(y) =
�

eŠ� (� ,y)� prior(� )d�. (3)

We focus on the case, where the prior� prior is (or is approximated as) Gaussian with mean and
covariancer0 and� 0, respectively. Then the posterior� post(� ) can be written as

� post(� ) =
1

Z(y)
eŠ� R(� ,y), � R(� , y) = � (� , y) +

1
2

� �
Š 1

2
0 (� Š r0)� 2. (4)

1.2.1. Computational approaches. Bayesian inference requires approximation of, or sam-
ples from, the posterior distribution given by equation (2). There are three major avenues to
approximate the posterior distribution:

€ Those based on variational inference [32, 33], where a parameterized approximate den-
sity is constructed and optimized to minimize the distance to the posterior density. They
include Gaussian variational inference [34…36] and normalizing �ows [37].

€ Those based on sampling and more importantly the invariance of measures and ergodicity.
They include MCMC [23, 24], Langevin dynamics [38, 39], and more recently interacting
particle approaches [25, 40…42].

At an abstract mathematical level, invariance and ergodicity-based approaches to sam-
pling from the posterior� post rely on the transition kernel� I(�

�, � ) such that

� post(� ) =
�

� I(� �, � )� post(� �)d� � , (5)

that is, the posterior distribution� post(� ) is invariant with respect to the transition kernel
� I (�

�, � ). Furthermore, starting from any initial distribution the associated Markov chain
should approach the invariant measure� post(� ) asymptotically.

€ Those based on coupling ideas (mostly in the form of coupling the prior with the poste-
rior). While several sequential data assimilation methods, such as importance sampling-
resampling in SMC [43] and the ensemble Kalman �ltering [44…46], can be viewed under
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the coupling umbrella, the systematic exploitation/exposition of the coupling perspective
in the context of Bayesian inference is more recent, including the ideas of transport maps
[47…51].

At an abstract mathematical level, the coupling approach is based on a transition kernel
� C(� �, � ) such that

� post(� ) =
�

� C(� �, � )� prior(� �)d� � . (6)

The transition kernel forms a coupling betweenthe prior and the posterior distribution and
is applied only once. The induced transition from� � � � prior to � � � post is of the type of
a McKean…Vlasov mean-�eld process and can be either deterministic or stochastic [45].
In practice the methodology is implemented via an approximate coupling, using linear
transport maps:

� = A� � + b, (7)

where the matrixA and the vectorb depend on the prior distribution� prior, the data
likelihood � , and the datay, and are chosen such that the induced random variable�
approximately samples from the posterior distribution� post. Many variants of the popular
ensemble Kalman �lter can be derived within this framework.

1.2.2. A novel algorithmic approach. The main contribution of this paper is to incorporate all
three approaches from above by designing a particular (arti�cial) mean-�eld dynamical system
and applying �ltering methods, which employ a Gaussian ansatz, to approximate the �ltering
distribution resulting from partial observation of the system; the equilibrium of the �ltering
distribution is designed to be close to the desired posterior distribution. At an abstract level,
we introduce a data-independent transition kernel, denoted by� P(� �� , � �), and another data-
dependent transition kernel, denoted by� A(� �� , � �), such that the posterior distribution� post
remains invariant under the both transition kernels combined, that is,

� post(� ) =
�

� A(� �, � )
� �

� P(� �� , � �)� post(� �� )d� ��

�
d� �. (8)

The �rst transition kernel,� P(� �� , � �), corresponds to the prediction step in �ltering methods
and is chosen such that

�� n+ 1(� ) =
�

� P(� �, � )� n(� �)d� � and �� n+ 1(� ) � � n(� )1Š� � , (9)

where 0< � � < 1 is the time-step size, a free parameter, and� n(� ) denotes the current density.
In other words, this transition kernel corresponds to a simple rescaling of a given density. The
second transition kernel,� A(� �� , � �), corresponds to the analysis step in �ltering methods and
has to satisfy

� n+ 1(� ) =
�

� A(� �, � )�� n+ 1(� �)d� � and � n+ 1(� ) � � post(� )� � �� n+ 1(� ). (10)

This transition kernel depends on the data and the posterior distribution and performs a suitably
modi�ed Bayesian inference step. Combining the two preceding displays yields

� n+ 1(� ) � � post(� )� � � n(� )1Š� � . (11)
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It is immediate that the overall transition� n �	 � n+ 1 is indeed invariant with respect to� post;
furthermore, by taking logarithms in the mapping from� n to � n+ 1 it is possible to deduce
exponential convergence to this steady state, for any 0< � � < 1. In our concrete algorithm a
mean �eld dynamical system is introduced for which equation (10) is satis�ed exactly, while
equation (9) is satis�ed only in the linear, Gaussian setting; the resulting �ltering distribution
is approximated using Kalman methodology applied to �lter the resulting partially observed
mean-�eld dynamical system. We emphasize that the involved transition kernels are all of
McKean…Vlasov type, that is, they depend on the distribution of the parameters� .

There are several related approaches. We mention in this context in particular the recently
proposed consensus-based methods. These sampling methods were analyzed in the context
of optimization in [52]. Similar ideas were then developed for consensus based sampling
(CBS) [53] based on the same principles employed here: to �nd a mean-�eld model which,
in the linear Gaussian setting converges asymptotically to the posterior distribution, and then
to develop implementable algorithms by employing �nite particle approximations of the mean-
�eld. Another related approach has been proposed in [54] where data assimilation algorithms
are combined with stochastic dynamics in order to approximately sample from the posterior
distribution� post.

1.3. Filtering methods for inversion

Since �ltering methods are at the heart of our proposed methodology, we provide here a
brief summary of a few key concepts. Filteringmethods may be deployed to approximate the
posterior distribution given by equation (2). The inverse problem is �rst paired with a dynam-
ical system for the parameter [55…58], leading to a hidden Markov model, to which �ltering
methods may be applied. In its most basic form, the hidden Markov model takes the form

evolution : � n+ 1 = � n, (12a)

observation : yn+ 1 = G(� n+ 1) + � n+ 1; (12b)

here� n is the unknown state vector,yn+ 1 is the output of the observation model, and� n+ 1 �
N (0,� � ) is the observation error at thenth iteration. Any �ltering method can be applied to
estimate� n given observation data{ y•

� } � = 1. The Kalman �lter [59] can be applied to this setting
provided the forward operatorGis linear and the initial state� 0 and the observation errors are
Gaussian. The Kalman �lter has been extended to nonlinear and non-Gaussian settings in man-
ifold ways, including but not limited to, the extended Kalman �lter (EKF, or sometimes ExKF)
[60, 61], the ensemble Kalman �lters (EnKF) [62…64], and the unscented Kalman (UKF) �lter
[58, 65]. We refer to the extended, ensemble and UKF �lters asapproximate Kalman �lters
to highlight the fact that, outside the linear setting where the Kalman �lter [59] is exact, they
are all uncontrolled approximations designed on the principle of matching �rst and second
moments.

More precisely, the EnKF uses Monte Carlo sampling to estimate desired means and covari-
ances empirically. Its update step is of the form (7) and can be either deterministic or stochastic.
The ensemble adjustment/transform �lters are particle approximations of square root �lters, a
deterministic approach to matching �rst and second moment information [66]. The UKF �lter
uses quadrature, and is also a deterministic method; it may also be viewed as approximating
a square root �lter. The stochastic EnKF on the other hand compares the datay to model gen-
erated data and its update step is intrinsically stochastic, that is, the vectorb in (7) itself is
random.
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All of the �ltering methods to estimate� n given{ y•
� }

n
� = 1 that we have described so far may

be employed in the setting wherey•
� 
 y; repeated exposure of the parameter to the data helps

the system to learn the parameter from the data. In order to maintain statistical consistency, an
N-fold insertion of the same datay requires an appropriate modi�cation of the data likelihood
function and the resulting Bayesian inference step becomes

� n(� ) 	 � n+ 1(� ) � � n(� )eŠ 1
N � (� ,y). (13)

Initializing with � 0(� ) = � prior(� ), afterN iterations,� N(� ) is equal to the posterior density. The

�ltering distribution for (12) recovers this exactly ify•
� 
 y and if the variance of� is rescaled

byN; use of ensemble Kalman methods in this setting leads to approximate Bayesian inference,
which is intuitively accurate when the posterior is close to Gaussian. We note that the resulting
methodology can be viewed as a homotopy method, such as SMC [27] and transport variants
[47], which seek to deform the prior into the posterior in one unit time with a �nite number
of inner stepsN„foundational papers introducing ensemble Kalman methods in this context
are [55, 56, 67]. Adaptive time-stepping strategies in this context are explored in [68…70].
Throughout this paper, we will denote the resulting methods as iterative extended Kalman �lter,
iterative ensemble Kalman �lter (IEnKF), iterative unscented Kalman �lter (IUKF), iterative
ensemble adjustment Kalman �lter (IEAKF) and iterative ensemble transport Kalman �lter
(IETKF).

We emphasize that multiple insertions of the same datay without the adjustment (13) of
the data likelihood function, and/or over arbitrary numbers of steps, leads to the class of
optimization-based Kalman inversion methods: EKI [57], Tikhonov-regularized EKI, termed
TEKI [71] and unscented Kalman inversion, UKI [72]; see also [73] for recent adaptive
methodologies which are variants on TEKI. These variants of the Kalman �lter lead to ef�cient
derivative-free optimization approaches to approximating the maximum likelihood estimator
or maximuma posterioriestimator in the asymptotic limit asn 	 � . The purpose of our
paper is to develop similar ideas, based on iteration to in�nity inn, but to tackle the problem
of sampling from the posterior� post(� ) rather than the optimization problem. To achieve these
we introduce a novel mean-�eld stochastic dynamical system, generalizing (12) and apply
ensemble Kalman methods to it. This leads to Bayesian analogues of EKI and the UKI. To
avoid proliferation of nomenclature, we will also refer to these as EKI and UKI relying on
the context to determine whether the optimization or Bayesian approach is being adopted;
in this paper our focus is entirely on the Bayesian context. We will also use ensemble adjust-
ment and transform �lters, denoted as EAKF and ETKF, noting that these two may be applied in
either the optimization (using (12)) or Bayesian (using the novel mean-�eld stochastic dynam-
ical system introduced here) context, but that here we only study the Bayesian problem. The
main conclusions of our work are two-fold, concerning the application of Kalman methods to
solve the Bayesian inverse problem: that with carefully chosen underlying mean-�eld dynam-
ical system, such that the prediction and analysis steps approximate equation (9) and replicate
equation (10), iterating to in�nity leads to more ef�cient and robust methods than the homotopy
methods which transport prior to posterior in a �nite number of steps; and that determin-
istic implementations of ensemble Kalman methods, and variants, are superior to stochastic
methods.

The methods we propose are exact in the setting of linearG and Gaussian prior density
� prior; but, for nonlinearG, the Kalman-based �lters we employ generally do not converge to
the exact posterior distribution, due to the Gaussian ansatz used when deriving the method; neg-
ative theoretical results and numerical evidence are reported in [74, 75]. Nonetheless, practical
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experience demonstrates that the methodology can be effective for problems with distributions
close to Gaussian, a situation which arises in many applications.

Finally, we note that we also include comparisons with the ensemble Kalman sampler
[75…77], which we refer to as the EKS, an ensemble based Bayesian inversion method derived
from discretizing a mean-�eld stochastic differential equation and which is also based on iter-
ation to in�nity, that is, on the invariance principle of the posterior distribution; and we include
comparison with the CBS approach [53] mentioned above, another methodology which also
iterates a mean-�eld dynamical system to in�nity to approximate the posterior.

1.4. Our contributions

The key idea underlying this work is the development of an ef�cient derivative-free Bayesian
inference approach based on applying Kalman-based �ltering methods to a hidden Markov
model arising from a novel mean-�eld dynamical system. Stemming from this, our main
contributions are as follows4:

(a) In the setting of linear Gaussian inverse problems, we prove that the �ltering distribution
of the mean �eld model converges exponentially fast to the posterior distribution.

(b) We generalize the inversion methods EKI, UKI, EAKI and ETKI from the optimization
to the Bayesian context by applying the relevant variants on Kalman methodologies to the
novel mean-�eld dynamical system (Bayesian) rather than to (12) (optimization).

(c) We study and compare application of both deterministic and stochastic Kalman methods
to the novel mean-�eld dynamical system, demonstrating that the deterministic methods
(UKI, EAKI and ETKI) outperform the stochastic method (EKI); this may be attributed
to smooth, noise-free approximations resulting from deterministic approaches.

(d) We demonstrate that the application of Kalman methods to the novel mean-�eld dynamical
system outperforms the application of Kalman �lters to transport/coupling models„the
IEnKF, IUKF, IEAKF and IETKF approaches; this may be attributed to the exponential
convergence underlying the �lter for the novel mean-�eld dynamical system.

(e) We also demonstrate that the application of Kalman methods to the novel mean-�eld
dynamical system outperforms the EKS, when Euler…Maruyama discretization is used,
because the continuous-time formulation requires very small time-steps, and CBS which
suffers from stochasticity, similarly to the EKI.

(f ) We propose several strategies, including low-rank approximation and a bi-�delity
approach, to reduce the computational and memory cost.

(g) We demonstrate, on both linear and nonlinear model problems (including inference for
subsurface geophysical properties in porous medium �ow), that application of determin-
istic Kalman methods to approximate the �ltering distribution of the novel mean-�eld
dynamical system delivers mean and covariance which are close to the truth or to those
obtained with the pCN MCMC method. The latter usesO(104) model evaluations or more
whilst for our method onlyO(10) iterations are required withO(10) ensemble members,
leading to onlyO(102) model evaluations, two orders of magnitude savings.

4 In making these statements, we acknowledge that for linearGaussian problems it is possible to solve the Bayesian
inverse problem exactly in one step, or multiple steps,using the Kalman �lter in transport/coupling mode, when
initialized correctly and with a large enough ensemble. However, the transport/coupling methods are not robust to
perturbations from initialization, non-Gaussianity and so forth, whereas the methods we introduce are. Our results
substantiate this claim.
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(h) The method is applied to perform Bayesian parameter inference of subgrid-scale parame-
ters arising in an idealized global climate model, a problem currently far beyond the reach
of state-of-the-art MCMC methods such as pCN and variants.

The remainder of the paper is organized as follows. In section2, the mean �eld dynam-
ical system, various algorithms which approximate its �ltering distribution, and a complete
analysis in the linear setting, are all presented. These correspond to our contributions (a) and
(b). In section3, strategies to speed up the algorithm and improve the robustness for real-world
problems are presented. These correspond to our contribution (f). Numerical experiments
are provided in section4; these serve to empirically con�rm the theory and demonstrate the
effectiveness of the framework for Bayesian inference. These correspond to our contributions
(c), (d), (e), (g) and (h). We makeconcluding remarks in section5.

The code is accessible online:
https://github.com/Zhengyu-Huang/InverseProblems.jl.

1.5. Notational conventions

A � B andA 
 B denoteA Š B positive-de�nite or positive-semide�nite, for symmetric matri-
cesA, B. � · � , �· , ·� denote Euclidean norm and inner-product. We useZ+ = { 0, 1, 2,. . .} to
denote the set of natural numbers;N (·, ·) to denote Gaussian distributions; and� (·) to denote
the spectral radius. As encountered in subsection1.2 we make use of the similar symbol�
for densities; these should be easily distinguished from spectral radius by context and by a
different font.

2. Novel algorithmic methodology

Our novel algorithmic methodology is introduced in this section. We �rst introduce the under-
lying mean-�eld dynamical system, which has prediction and analysis steps corresponding to
the aforementioned transition kernels, in subsection2.1. Then, in subsection2.2, we introduce
a class of conceptual Gaussian approximation algorithms found by applying Kalman method-
ology to the proposed mean-�eld dynamical system. Through linear analysis, we prove in
subsection2.3that these algorithms converge exponentially to the posterior. For the nonlinear
setting, a variety of nonlinear Kalman inversion methodologies are discussed in subsection2.4.

2.1. Mean-field dynamical system

Following the discussion from section1.2.2, we propose an implementation of (8) to solve
inverse problems by pairing the parameter-to-data map with a dynamical system for the param-
eter, and then employ techniques from �ltering to estimate the parameter given the data.

We introduce the prediction step

� n+ 1 = � n + 	 n+ 1. (14)

Here� n+ 1 is the unknown state vector and	 n+ 1 � N (0,� 	 ,n+ 1) is the independent, zero-mean
Gaussian evolution error, which will be chosen such that (14) mimics (9) for Gaussian densities.
The analysis step (10) follows exactly from the observation model (�rst introduced in [71])

xn+ 1 = F (� n+ 1) + 
 n+ 1; (15)

here we have de�ned the augmented forward map
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F (� ) =
�
G(� )

�

�
, (16)

with 
 n+ 1 � N (0,� 
 ,n+ 1) the independent, zero-mean Gaussian observation error, andxn+ 1

the output of the observation model at timen + 1. We de�ne arti�cial observationx•
n+ 1 using

the following particular instance of the data, constructed from the one observationy and the
prior meanr0 and assumed to hold for alln � 1:

x•
n+ 1 = x :=

�
y
r0

�
. (17)

We will apply �ltering methods to condition� n on Yn := { x•
1, x•

2, . . . , x•
n} , the observation set

at timen. As we will see later, the choice of{ x•
� } l= 1 leads to the correct posterior.

LetCn denote the covariance of the conditional random variable� n|Yn. Then the error covari-
ance matrices{ � 	 ,n+ 1} and { � 
 ,n+ 1} in the extended dynamical system (14) and (15) are
chosen at thenth iteration, as follows:

� 
 ,n+ 1 =
1

� �

�
� � 0
0 � 0

�
and � 	 ,n+ 1 =

� �
1 Š � �

Cn. (18)

Here 0< � � < 1, and in our numerical studies we choose� � = 1/ 2, although other choices
are possible. Since the arti�cial evolution error covariance� 	 ,n+ 1 in (14) is updated based on
Cn, the conditional covariance of� n|Yn, it follows that (14) is a mean-�eld dynamical system:
it depends on its own law, speci�cally on the law of� n|Yn. Details underpinning the choices
of the error covariance matrices{ � 	 ,n} and{ � 
 ,n} are given in subsections2.2 and2.3: the
matrices are chosen so that, for linear Gaussianproblems, the prediction and analysis steps
follow equations (9) and (10), and the converged mean and covariance of the resulting �ltering
distribution for� n|Yn under the prediction step (14) and the observation model (15) match the
posterior mean and covariance.

2.2. Gaussian approximation

Denote by� n, the conditional density of� n|Yn. We �rst introduce a class of conceptual Kalman
inversion algorithms which approximate� n by considering only �rst and second order statis-
tics (mean and covariance), and update� n sequentially using the standard prediction and
analysis steps [45, 46]: � n �	 �� n+ 1, and then�� n+ 1 �	 � n+ 1, where�� n+ 1 is the distribution of
� n+ 1|Yn. The second analysis step is performed by invoking a Gaussian hypothesis. In sub-
sequent subsections, we then apply differentmethods to approximate the resulting maps on
measures, leading to unscented, stochastic ensemble Kalman and adjustment/transform square
root Kalman �lters.

In the prediction step, assume that� n � N (mn, Cn), then under equation (14), �� n+ 1 =
N (�mn+ 1, �Cn+ 1) is also Gaussian and satis�es

�mn+ 1 = E[� n+ 1|Yn] = mn �Cn+ 1 = Cov[� n+ 1|Yn] = Cn + � 	 ,n+ 1. (19)

In the analysis step, we assume that the joint distribution of{ � n+ 1, xn+ 1}| Yn can be approxi-
mated by a Gaussian distribution

N

� �
�mn+ 1

�xn+ 1

�
,

	
�Cn+ 1 �C� x

n+ 1

�Cn+ 1
� x T �Cxx

n+ 1


�

, (20)

where
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�xn+ 1 = E[xn+ 1|Yn] = E[F (� n+ 1)|Yn],

�C� x
n+ 1 = Cov[� n+ 1, xn+ 1|Yn] = Cov[� n+ 1, F (� n+ 1)|Yn],

�Cxx
n+ 1 = Cov[xn+ 1|Yn] = Cov[F (� n+ 1)|Yn] + � 
 ,n+ 1.

(21)

These expectations are computed by assuming� n+ 1|Yn � �� n+ 1 and noting that the distribution
of (� n+ 1, xn+ 1) is then de�ned by (14) and (15). This corresponds to projecting5 the joint distri-
bution onto the Gaussian which matches its mean and covariance. Conditioning the Gaussian
in equation (20) to �nd � n+ 1|{ Yn, x•

n+ 1} = � n+ 1|Yn+ 1, gives the following expressions for the
meanmn+ 1 and covarianceCn+ 1 of the approximation to� n+ 1:

mn+ 1 = �mn+ 1 + �C� x
n+ 1(�Cxx

n+ 1)Š1(x•
n+ 1 Š �xn+ 1), (22a)

Cn+ 1 = �Cn+ 1 Š �C� x
n+ 1(�Cxx

n+ 1)
Š1�C� x T

n+ 1 . (22b)

Equations (19) to (21), (22a) and (22b) establish a class of conceptual algorithms for appli-
cation of Gaussian approximation to solve the inverse problems. To make implementable
algorithms a high level choice needs to be made: whether to work strictly within the class
of Gaussians, that is to impose� n 
 N (mn, Cn), or whether to allow non-Gaussian� n but to
insist that the second order statistics of the resulting measures agree with equations (19) to
(21), (22a) and (22b). In what follows the UKI takes the �rst perspective; all other methods
take the second perspective. For the UKI the method views equations (19) to (21), (22a) and
(22b) as providing a nonlinear map (mn, Cn) �	 (mn+ 1, Cn+ 1); this map is then approximated
using quadrature. For the remaining methods a mean-�eld dynamical system is used, which
is non-Gaussian but matches the aforementioned Gaussian statistics; this mean-�eld model is
then approximated by a �nite particle system [79]. The dynamical system is of mean-�eld type
because of the expectations required to calculate equations (20), (21) and (18). The continu-
ous time limit of the evolution for the mean and covariance is presented in appendixA; this is
obtained by letting� � 	 0.

Remark 1. Consider the case, where� n = N (mn, Cn) is Gaussian. With the speci�c choice
of { � 	 ,n} , we have�� n+ 1 = N (mn, 1

1Š� � Cn) from the prediction step equation (19), and hence
the Gaussian density functions� n and�� n+ 1 ful�ll equation (9). With the extended observation
model (15) and the speci�c choice of{ � 
 ,n} , the analysis step without Gaussian approximation
can be written as

� (� n+ 1|Yn+ 1) � � (� n+ 1|Yn)� (x•
n+ 1|� n+ 1, Yn)

� �� n+ 1(� n+ 1)eŠ� � � R(� n+ 1,y)

� �� n+ 1(� n+ 1)� (� n+ 1)� � (23)

and hence the density functions�� n+ 1 and� n+ 1 ful�ll equation (10). Note, however, that� n+ 1
is not, in general, Gaussian, unlessG is linear, the case studied in the next section. In the
nonlinear case, we employ Kalman-based methodology which only employs �rst and second
order statistics, and in effect projects� n+ 1 onto a Gaussian.

5 We use the term •projecting• as �nding the Gaussianp which matches the �rst and second moments of a given
measure� corresponds to �nding the closest Gaussianp to � with respect to variation in the second argument of the
(nonsymmetric) Kullback…Leibler divergence [78, theorem 4.5].
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2.3. Linear analysis

In this subsection, we study the algorithm in the context of linear inverse problems, for which
G(� ) = G� for some matrixG. Furthermore we assume that� prior is GaussianN (r0, � 0) and
recall that the observational noise isN (0,� � ). Thanks to the linear Gaussian structure the
posterior is also Gaussian with mean and precisions given by

mpost = r0 +
�
GT� Š1

� G + � Š1
0


 Š1
GT� Š1

� (y Š Gr0) and

CŠ1
post = GT� Š1

� G + � Š1
0 . (24)

Furthermore, the equation (21) reduce to

�xn+ 1 = Fmn, �C� x
n+ 1 = �Cn+ 1FT, and

�Cxx
n+ 1 = F�Cn+ 1FT + � 
 ,n+ 1 whereF =

�
G
I

�
.

We note that

�Fv, Fv� � � v� 2. (25)

The update equations (22a) and (22b) become

mn+ 1 = mn + �Cn+ 1FT(F�Cn+ 1FT + � 
 ,n+ 1)Š1(x Š Fmn), (26a)

Cn+ 1 = �Cn+ 1 Š �Cn+ 1FT(F�Cn+ 1FT + � 
 ,n+ 1)Š1F�Cn+ 1, (26b)

with �Cn+ 1 = Cn + � 	 ,n+ 1. We have the following theorem about the convergence of the
algorithm:

Theorem 1. Assume that the error covariance matrices are as de�ned in equation(18)
with 0 < � � < 1 and that the prior covariance matrix� 0 � 0 and initial covariance matrix
C0 � 0. The iteration for the conditional mean mn and precision matrix CŠ1

n characterizing the
distribution of� n|Yn converges exponentially fast to limit m� , CŠ1

� . Furthermore the limiting
mean m� and precision matrix CŠ1

� = GT� Š1
� G + � Š1

0 are the posterior mean and precision
matrix given by(24).

Proof. With the error covariance matrices de�ned in equation (18), the update equation for
{ Cn} in equation (26b) can be rewritten as

CŠ1
n+ 1 = FT� Š1


 ,n+ 1F + (Cn + � 	 ,n+ 1)Š1

= � �
�
GT� Š1

� G + � Š1
0



+ (1 Š � � )CŠ1

n . (27)

We thus have a closed formula forCŠ1
n :

CŠ1
n =

�
1 Š (1 Š � � )n��

GT� Š1
� G + � Š1

0



+ (1 Š � � )nCŠ1

0 . (28)

Since 0< � � < 1 this leads to the exponential convergence lim
n	�

CŠ1
n = GT� Š1

� G + � Š1
0 =

CŠ1
post given by (24).

11
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Since we have made a choice independent ofn we write� 
 := � 
 ,n+ 1. Thus equations (27)
and (28) lead to

FT� Š1

 F � CŠ1

n+ 1 � FT� Š1

 F + � + where� + =

1 Š � �
� �

FT� Š1

 F + CŠ1

0 . (29)

The update equation ofmn in equation (26a) can be rewritten as

mn+ 1 = mn + Cn+ 1FT� Š1

 (x Š Fmn). (30)

Note thatB:= FT� Š1

 F is symmetric and that, as a consequence of (25) together with the fact

that � 
 � 0, it follows thatB � 0; thus we have thatI Š Cn+ 1B has the same spectrum as
I Š B

1
2 Cn+ 1B

1
2 . Using the upper bound onCn+ 1 appearing in equation (29), the spectral radius

of the update matrix in equation (30) satis�es

� (I Š Cn+ 1FT� Š1

 F) = � (I Š Cn+ 1B)

= �
�

I Š B
1
2 Cn+ 1B

1
2

�

� 1 Š �
�

B
1
2
�
B + � +


 Š1
B

1
2

�

= 1 Š � 0, (31)

where� 0 � (0, 1). Hence, we deduce that{ mn} converges exponentially to the stationary point
m� , which satis�esFT� Š1


 (x Š Fm� ) = 0. Using the structure ofF and� 
 the limiting mean
can be written as the posterior mean given in (24):

m� = r0 +
�
GT� Š1

� G + � Š1
0


 Š1
GT� Š1

� (y Š Gr0) = mpost. (32)

�

Remark 2. Although this theorem applies only to thelinear Gaussian setting we note that the
premise of matching only �rst and second order moments is inherent to all Kalman methods.
We demonstrate numerically in section4 that application of the �ltering methodology based
on the proposed choices of covariances leads to approximated mean and covariances which are
accurate for nonlinear inverse problems.

Remark 3. We note that the convergence of the means/covariances of the Kalman �lter is
a widely studied topic; and variants on some of our results can be obtained from the existing
literature, for example, the use of contraction mapping arguments to study convergence of the
Kalman �lter is explored in [80, 81].

2.4. Nonlinear Kalman inversion methodologies

To make practical methods for solving nonlinear inverse problems (1) out of the foregoing,
the expectations (integrals) appearing in the prediction step (19) as well as in the analysis step
via equation (21) need to be approximated appropriately. While equation (19) can be imple-
mented via a simple rescaling of the covariance matrix or ensemble, respectively, (we use both)
the analysis step can be implemented usingany nonlinear Kalman �lter (we use a variety).
In the present work, we focus on both the unscented and EnKF, which lead to the Bayesian

12
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implementations of unscented Kalman inversion (UKI), stochastic ensemble Kalman inver-
sion (EKI), ensemble adjustment Kalman inversion (EAKI), and ensemble transform Kalman
inversion (ETKI). We now detail these methods6.

2.4.1. Unscented Kalman inversion (UKI). UKI approximates the integrals in equation (21) by
means of deterministic quadrature rules; this is the idea of the unscented transform [58, 65].
We now de�ne this precisely in the versions used in this paper.

Definition 1 (Modified unscented transform [ 72]). Consider Gaussian random vari-
able� � N (m, C) � RN� . De�ne J sigma points{ � j} JŠ1

j= 0 according to the deterministic formu-
lae

� 0 = m � j = m+ [
�

C]IN� [:, j] (1 � j � J Š 1); (33)

here [
�

C] is the Cholesky factor ofC and IN� [:, j] is the jth column of the matrixIN� �
RN� × (JŠ1). Consider any two real vector-valued functionsF1(·) andF2(·) acting onRN� . Using
the sigma points we may de�ne a quadrature rule approximating the mean and covariance of
the random variablesF1(� ) andF2(� ) as follows:

E[F i(� )] � F i(� 0)

Cov[F1(� ), F2(� ] �
JŠ1�

j= 1

a
�
F1(� j) Š EF1(� )


�
F2(� j) Š EF2(� )


 T
. (34)

In the present work, we consider the following two variants,

€ UKI-1 (J = N� + 2) [12, 82]. IN� is de�ned recursively as

I1 =
�
Š

1
�

2a

1
�

2a

�
(35)

Id =

�

�
�
�
�
�

0

IdŠ1
...
0

1
�

ad(d + 1)
. . .

1
�

ad(d + 1)
Šd

�
ad(d + 1)

�

�
�
�
�
�

, 2 � d � N�

(36)

and the weight parameter is chosen asa = N�
4(N� + 1).

6 Recall the discussion in subsection1.3about distinction between optimization and Bayesian implementations of all
these methods.
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€ UKI-2 (J = 2N� + 1) [72]. IN� is de�ned as

IN� =

�

�
�
�
�
�
�
�
�
�

1
�

2a
Š

1
�

2a
1

�
2a

Š
1

�
2a

...
...

1
�

2a
Š

1
�

2a

�

�
�
�
�
�
�
�
�
�

(37)

and the weight parameter is chosen asa = max{ 1
8, 1

2N�
} .

Consider the Gaussian approximation algorithm de�ned by equations (19) to (21), (22a)
and (22b). By utilizing the aforementioned quadrature rule, the iteration procedure of the UKI
becomes:

€ Prediction step:

�mn+ 1 = mn �Cn+ 1 =
1

1 Š � �
Cn. (38)

€ Generate sigma points:

�� 0
n+ 1 = �mn+ 1, �� j

n+ 1 = �mn+ 1 + [
�

�Cn+ 1]IN� [:, j] (1 � j � J Š 1). (39)

€ Analysis step:

�xj
n+ 1 = F (�� j

n+ 1) (0 � j � J Š 1),

�xn+ 1 = �x0
n+ 1,

�C� x
n+ 1 =

JŠ1�

j= 1

a(�� j
n+ 1 Š �mn+ 1)(�x

j
n+ 1 Š �xn+ 1)T,

�Cxx
n+ 1 =

JŠ1�

j= 1

a(�xj
n+ 1 Š �xn+ 1)(�xj

n+ 1 Š �xn+ 1)T + � 
 ,n+ 1,

mn+ 1 = �mn+ 1 + �C� x
n+ 1(�C

xx
n+ 1)

Š1(x Š �xn+ 1),

Cn+ 1 = �Cn+ 1 Š �C� x
n+ 1(�C

xx
n+ 1)

Š1�C� x T
n+ 1 . (40a)

2.4.2. Ensemble Kalman inversion. Ensemble Kalman inversion represents the distribution at
each iteration by an ensemble of parameter estimates{ � j

n} J
j= 1 and approximates the integrals

in equation (21) empirically. We describe three variants on this idea.
Stochastic ensemble Kalman inversion (EKI). The perturbed observations form of the

ensemble Kalman �lter [83] is applied to the extended mean-�eld dynamical system (14) and
(15), which leads to the EKI:

14
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€ Prediction step:

�mn+ 1 = mn, �� j
n+ 1 = �mn+ 1 +

�
1

1 Š � �
(� j

n Š mn). (41)

€ Analysis step:

�xj
n+ 1 = F (�� j

n+ 1) �xn+ 1 =
1
J

J�

j= 1

�x j
n+ 1, (42a)

�C� x
n+ 1 =

1
J Š 1

J�

j= 1

(�� j
n+ 1 Š �mn+ 1)(�x

j
n+ 1 Š �xn+ 1)T, (42b)

�Cxx
n+ 1 =

1
J Š 1

J�

j= 1

(�x j
n+ 1 Š �xn+ 1)(�xj

n+ 1 Š �xn+ 1)T + � 
 ,n+ 1, (42c)

� j
n+ 1 = �� j

n+ 1 + �C� x
n+ 1

�
�Cxx

n+ 1

� Š1
(x Š �xj

n+ 1 Š 
 j
n+ 1), (42d)

mn+ 1 =
1
J

J�

j= 1

� j
n+ 1. (42e)

Here the superscriptj = 1,. . . , J is the ensemble particle index, and
 j
n+ 1 � N (0,� 
 ,n+ 1)

are independent and identically distributed random variables. The prediction step ensures
the exactness of the predictive covariance equation (19).

Remark 4. The prediction step (41) is inspired by square root Kalman �lters [63, 64,
66, 84] and covariance in�ation [85]; these methods are designed to ensure that the mean
and covariance of{ �� j

n+ 1} match �mn+ 1 and �Cn+ 1 exactly. This is different from traditional
stochastic ensemble Kalman inversion implementation, where i.i.d. Gaussian noises	 j

n+ 1 �
N (0,� 	 ,n+ 1) are added. In the analysis step (42), we add noise in the{ � j

n+ 1} update (42d)
instead of the{ �xj

n+ 1} evaluation (42a); this ensures that�Cxx
n+ 1 (42c) is symmetric positive

de�nite.

Remark 5. As a precursor to understanding the adjustment and transform �lters which fol-
low this subsection, we show that the EKI does not exactly replicate the covariance update
equation (22b). To this end, denote the matrix square roots�Zn+ 1, Zn+ 1 � RN� × J of �Cn+ 1, Cn+ 1

and �Yn+ 1 as follows:

�Zn+ 1 =
1

�
J Š 1

�
�� 1

n+ 1 Š �mn+ 1
�� 2

n+ 1 Š �mn+ 1 . . . �� J
n+ 1 Š �mn+ 1

�
,

Zn+ 1 =
1

�
J Š 1

�
� 1

n+ 1 Š mn+ 1 � 2
n+ 1 Š mn+ 1 . . . � J

n+ 1 Š mn+ 1


,

�Yn+ 1 =
1

�
J Š 1

�
�x1

n+ 1 Š �xn+ 1 �x2
n+ 1 Š �xn+ 1 . . . �xJ

n+ 1 Š �xn+ 1


.

(43)

Then the covariance update equation (22b) does not hold exactly:
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�Cn+ 1 Š �C� x
n+ 1(�Cxx

n+ 1)
Š1�C� x T

n+ 1 = �Zn+ 1�ZT
n+ 1 Š �Zn+ 1 �YT

n+ 1

× ( �Yn+ 1 �YT
n+ 1 + � 
 ,n+ 1)Š1 �Yn+ 1�ZT

n+ 1

�= Zn+ 1ZT
n+ 1 = Cn+ 1. (44)

Ensemble EAKI. Following the ensemble adjustment Kalman �lter proposed in [63], the
analysis step updates particles deterministically with a pre-multiplierA,

� j
n+ 1 Š mn+ 1 = A(�� j

n+ 1 Š �mn+ 1). (45)

HereA = P�D
1
2 UD

1
2 �DŠ 1

2 PT with

SVD : �Zn+ 1 = P�D
1
2 VT,

SVD : VT
�

I + �YT
n+ 1�

Š1

 ,n+ 1

�Yn+ 1

� Š1
V = UDUT,

(46)

where both�D andD are non-singular diagonal matrices, with dimensionality rank (�Zn+ 1), and
�Zn+ 1 and �Yn+ 1 are de�ned in equation (43). The analysis step becomes:

€ Analysis step:

mn+ 1 = �mn+ 1 + �C� x
n+ 1

�
�Cxx

n+ 1

� Š1
(x Š �xn+ 1), (47a)

� j
n+ 1 = mn+ 1 + A(�� j

n+ 1 Š �mn+ 1). (47b)

Remark 6. It can be veri�ed that the covariance update equation (22b) holds:

Cn+ 1 = Zn+ 1ZT
n+ 1

= A�Zn+ 1�ZT
n+ 1AT

= P�D
1
2 UDUT �D

1
2 P

= �Zn+ 1

�
I + �YT

n+ 1�
Š1

 ,n+ 1

�Yn+ 1

� Š1
�ZT

n+ 1

= �Zn+ 1

�
I Š �YT

n+ 1( �Yn+ 1 �YT
n+ 1 + � 
 ,n+ 1)Š1 �Yn+ 1

�
�ZT

n+ 1

= �Cn+ 1 Š �C� x
n+ 1(�C

xx
n+ 1)

Š1�C� x T
n+ 1 . (48)

ETKI . Following the ensemble transform Kalman �lter proposed in [64, 66, 84], the analysis
step updates particles deterministically with a post-multiplierT,

Zn+ 1 = �Zn+ 1T. (49)

HereT = P(� + I )Š 1
2 PT, with

SVD: �Yn+ 1� Š1

 ,n+ 1

�Yn+ 1 = P� PT. (50)

The analysis step becomes:
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€ Analysis step:

mn+ 1 = �mn+ 1 + �C� x
n+ 1

�
�Cxx

n+ 1

� Š1
(x Š �xn+ 1), (51a)

Zn+ 1 = �Zn+ 1T. (51b)

Remark 7. It can be veri�ed that the covariance update equation (22b) holds:

Cn+ 1 = Zn+ 1ZT
n+ 1

= �Zn+ 1TTT�ZT
n+ 1

= �Zn+ 1
�
I + P� PT
 Š1�ZT

n+ 1

= �Zn+ 1

�
I + �YT

n+ 1�
Š1

 ,n+ 1

�Yn+ 1

� Š1
�ZT

n+ 1

= �Zn+ 1

�
I Š �YT

n+ 1( �Yn+ 1 �YT
n+ 1 + � 
 ,n+ 1)Š1 �Yn+ 1

�
�ZT

n+ 1

= �Cn+ 1 Š �C� x
n+ 1(�C

xx
n+ 1)

Š1�C� x T
n+ 1 . (52)

Particles (ensemble members) updated by the basic form of the EKI algorithm through
iterates are con�ned to the linear span of the initial ensemble [55, 57]. The same is true for
both EAKI and ETKI:

Lemma 1. For both EAKI and ETKI, all particles lie in the linear spaceA spanned by m0
and the column vectors of Z0.

Proof. We will prove thatmn and column vectors ofZn are inA by induction. We assume

this holds for alln � k. Since�mk+ 1 = mk and�Zk+ 1 =
�

1
1Š� � Zk (see equation (41)), �mk+ 1 and

column vectors of�Zk+ 1 are inA . Combining the mean update equations (47a) and (51a) and
the fact that�C� x

k+ 1 = �Zk+ 1 �YT
k+ 1, we havemk+ 1 is in A . For EAKI, since the pre-multiplierA =

P�D
1
2 UD

1
2 �DŠ 1

2 PT, andP is the left compact singular matrix of�Zk+ 1, it follows that the column
vectors ofA lie in A ; furthermore, the square root matrix update equation (47b), Zk+ 1 = A�Zk,
has implication that the column vectors ofZk+ 1 lie in A . For the ETKI, the square root matrix
update equation (51b) implies that the column vectors ofZk+ 1 lie in A . Sincemn and column
vectors ofZn are inA , so are the particles{ � j

n}
J
j= 1. �

3. Variants on the basic algorithm

In this section, we introduce three strategies to make the novel mean-�eld based methodology
more ef�cient, robust and widely applicable in real large-scale problems. In subsection3.1
we introduce low-rank approximation, in which the parameter space is restricted to a low-
rank space induced by the prior; subsection3.2 introduces a bi-�delity approach in which
multi�delity models are used for different ensemble members; and box constraints to enforce
pointwise bounds on� are introduced in subsection3.3.
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3.1. Low-rank approximation

When using ensemble methods for state estimation, the dimension of the ensemble space
needed for successful state estimation may be much smaller thanN� ; a useful rule of thumb is
that the ensemble space needs to be rich enough to learn about the unstable directions in the
system. When using ensemble methods for inversion the situation is not so readily understood.
The EKI algorithm presented here is limited to �nding solutions in the linear span of the ini-
tial ensemble [55, 57] and we have highlighted a similar property for the EAKI and ETKI in
lemma1. While localization is often used to break this property [86] its use for this purpose is
somewhat ad hoc. In this work we do not seek to break the subspace property. Indeed here we
exploit low rank approximation within ensemble inversion techniques, a methodology which
leads to solutions restricted to the linear span of a small number of dominant modes de�ned
by the prior distribution.

Theorem1 requires that the initial covariance matrixC0 � 0 be strictly positive de�nite.
To satisfy the assumption, the UKI requiresN� + 2 or 2N� + 1 forward problem evaluations
and the storage of anN� × N� covariance matrix, and the EKI, EAKI and ETKI requireO(N� )
forward problem evaluations and the storage ofO(N� ) parameter estimates; some of the impli-
cations of these effects are numerically veri�ed in section4.4. Therefore, they are unaffordable
for �eld inversion problems, whereN� is large, typically from discretization of theN� = �
limit. However, many physical phenomena or systems exhibit large-scale structure or �nite-
dimensional attractors, and in such situations the model error covariance matrices are generally
low-rank; these low-rank spaces are spanned by, for example, the dominant Karhunen…Loève
modes for random �elds [87, 88] or the dominant spherical harmonics space on the
sphere [63, 89]. We introduce a reparameterization strategy for this framework in order to
leverage such low-rank structure when present, and thereby to reduce both computational and
storage costs.

Given the prior distributionN (r0, � 0), we assume� 0 is a low-rank matrix with the truncated
singular value decomposition

� 0 � UD0UT.

HereU = { u1, u2, . . . , uNr } is theNr-dominant singular vector matrix andD0 is the singular
value matrix. The discrepancy� Š r0 is assumed to be well-approximated in the linear space
spanned by column vectors ofU. Hence, the unknown parameters can be reparameterized as
follows:

� = r0 +
Nr�

i= 1

� (i)ui.

The aforementioned algorithm is then applied to solve for the vector� = [� (1), � (2), . . . , � (Nr )]T,
which has prior mean 0 and prior covarianceD0. This reduces the computation and memory
cost fromO(N� ) andO(N2

� ) to O(Nr) andO(Nr N� ), whereNr is the rank of the covariance
matrix.

More advanced approaches to extracting the low-rank space exist, including active subspace
methods [90] and likelihood-informed subspace methods [91, 92]; however, they all require
derivatives and so we do not pursue them here.

3.2. Bi-fidelity approach

For large-scale scienti�c or engineering problems, even with a small parameter numberN�

(or rank numberNr), the computational cost associated with theseO(N� ) (or O(Nr)) forward
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model evaluations can be intractable; for example the number of parameters may be small, but
the parameter-to-data map may require evaluation of a large, complex model. The bi-�delity or
multilevel strategy [93…96] is widely used to accelerate sampling-based methods; in particular
it has been introduced in the context of ensemble methods in [97] and see [98] for a recent
overview of developments in this direction.

We employ a particular bi-�delity approach for the UKI algorithm. In this approach,
low-�delity models can be used to speed up forward model evaluations as follows. Con-
sider equation (40a); evaluation of the meanG(�� 0

n+ 1) can be performed using a high-�delity
model; meanwhile the otherJ Š 1 forward evaluations employed for covariance estimation,
{G(�� j

n+ 1)}
JŠ1
j= 1, can use low-�delity models.

3.3. Box constraints

Adding constraints to the parameters (for example, dissipation is non-negative) signi�cantly
improves the robustness of Kalman inversion [99…101]. In this paper, there are occasions where
we impose element-wise box constraints of the form

0 � � or � min � � � � max.

These are enforced by change of variables writing� = 
 (�� ) where, for example, respectively,


 (�� ) = exp(�� ) or 
 (�� ) = � min +
� max Š � min

1 + exp(�� )
.

The inverse problem is then reformulated as

y = G(
 (�� )) + �

and the proposed Kalman inversion methods are employed withG �	 G � 
 .

4. Numerical experiments

In this section, we present numerical experiments demonstrating application of �ltering meth-
ods to the novel mean-�eld dynamical system (equations (14), (15) and (18)) introduced in this
paper7; the goal is to approximate the posterior distribution of unknown parameters or �elds.
The �rst subsection lists the �ve test problems, and the subsequent subsections consider them
each in turn. In summary, our �ndings are as follows8:

€ The proposed Kalman inversion methods based on (equations (14), (15) and (18)) are
more ef�cient than transport/coupling methods based on (12) (i.e., iterative Kalman �lter
methods) on all the examples we consider. They remove the sensitivityto the initialization
and, relatedly, they converge exponentially fast.

€ The proposed Kalman inversion methods with deterministic treatment of stochastic terms,
speci�cally UKI and EAKI, outperform other methods with stochastic treatments, such
as EKI, EKS (with Euler…Maruyama discretization) and CBS. They do not suffer from
the presence of noisy �uctuations and achieve convergence for both linear and nonlinear
problems.

7 We �x � � = 1/ 2 based on the parameter study presented in appendixA and iterateO(10) iterations to demonstrate
convergence. In practice, adaptive time stepping and increment-based stopping criteria can be applied.
8 The footnote from subsection1.4, appearing before the bulleted list of contributions, applies here too.
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€ The methodology is implementable for large-scale parameter identi�cation problems, such
as those arising in climate models.

4.1. Overview of test problems

The �ve test problems considered are:

(a) Linear-Gaussian two-parameter model problem: this problem serves as a proof-of-concept
example, which demonstrates the convergence of the mean and the covariance as analyzed
in subsection2.3.

(b) Nonlinear two-parameter two-point boundary value problem: this example appears in [74]
an important paper which demonstrates that the mean �eld limit of ensemble Kalman
inversion methods may be far from the true posterior; it is also used as a test case in several
other papers, such as [75, 102]. We show that by applying Kalman �ltering techniques
to the extended mean-�eld dynamical system (equations (14), (15) and (18)), we obtain
methods which obtain accurate posterior approximation on this problem.

(c) Hilbert matrix problem: this high dimensional linear-Gaussian problem demonstrates the
ability of the proposed Kalman inversion methodology to solve ill-conditioned inverse
problems. In addition to testing the novel mean-�eld approach introduced in this paper, we
also study the effect of the ensemble size on ensemble Kalman inversion, and in particular,
the ensemble adjustment/transform Kalman inversions are examined in this context.

(d) Darcy �ow inverse problem: this is an in�nite dimensional �eld inversion problem
(see [30] and the references therein); in addition to testing the novel mean-�eld approach
introduced in this paper, we also demonstrate the low-rank approximation strategy in
subsection3.1.

(e) Idealized global climate model: this 3D Navier…Stokes problem, see [72] for background
and references; in addition to testing the novel mean-�eld approach introduced in this
paper, we also demonstrate the bi-�delity approach introduced in subsection3.2.

For the �rst and third problems, the Gaussian structure means that they are exactly solv-
able and this provides a benchmark against which we compare various methods. Markov chain
Monte Carlo methods (MCMC), speci�cally the random walk Metropolis [24] and precondi-
tioned Crank…Nicolson [26] methods, are used as the benchmark for the second and fourth
problems respectively. Problem �ve is too large for the use of MCMC, and showcases the
potential of the methodology studied here to solve problems otherwise beyond reach.

In the �rst two tests, we compare the proposed Kalman inversion methods (EKI, UKI,
EAKI, ETKI applied to equations (14), (15) and (18) with other recently proposed Gaussian
approximation algorithms, including the ensemble Kalman sampler (EKS) [75, 77],9 and the
consensus-based sampler (CBS) [52, 53, 103…105].10 We also compare with variants of iter-
ative Kalman �lter methods, which seek to deform the prior into the posterior in one time
unit (transport/coupling) using a �nite number of intermediate steps (see appendixB) based
on (12). They include iterative unscented Kalman �lters (IUKF-1, IUKF-2), IEnKF, iterative
ensemble adjustment Kalman �lter (IEAKF), and iterative ensemble transform Kalman �lter
(IETKF) [55, 56, 106, 107] [108, algorithm 3]. Having shown the superiority of �ltering based
on our novel mean �eld dynamical system, we consider only this approach in the remaining
examples. In the third test, we study the effect of the ensemble size on the proposed Kalman

9 We follow the implementation in [75], which employs adaptive time-stepping.
10We follow the implementation in [53], setting� = 0.0 and adaptively updating� with µ = 0.5.
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inversion methods, in particular for the EAKI/ETKI approaches to �ltering, comparing with
the UKI. In the fourth and �fth tests, we demonstrate the effectiveness of the proposed Kalman
inversion methods for large-scale inverse problems and incorporate the low-rank and bi-�delity
approaches.

4.2. Linear two-parameter model problem

We consider the two-parameter linear inverse problem [72] of �nding � � R2 from y given by

y = G� + �. (53)

Here the observation error noise is� � N (0, 0.12I ). We explore the following two scenarios

€ Over-determined system

y =

�

�
3
7
10

�

� G =

�

�
1 2
3 4
5 6

�

� � prior � N (0,I ); (54)

€ Under-determined system

y =
�
3
�

G =
�
1 2

�
� prior � N (0,I ). (55)

We apply various Kalman inversions to our proposed novel mean-�eld dynamical system,
including UKI-1 (J = 4), UKI-2 (J = 5), EKI, EAKI, and ETKI; we compare with pre-existing
coupling/transport based iterative Kalman �lters, including IUKF-1 (J = 4), IUKF-2 (J = 5),
IEnKF, IEAKF and IETKF all withJ = 10 ensemble members; and we compare with EKS,
and CBS, again all withJ = 10. All algorithms are initialized at the prior distribution; note
however that the methods we introduce in this paper, and EKS and CBS, do not require this
and indeed are robust to the use of different initializations. The iterative Kalman �lters are
discretized with� � = 1

30, and further correction (see appendixB.2) is applied on the initial
ensemble members for the exactness of the initialization, except for the IEAKF� . Since the
posterior distribution is Gaussian, we can compute the reference distribution analytically. The
convergence of the posterior mean and posterior covariance are reported in �gures1 and2.
Because we use the same number of steps for all algorithms, and commensurate numbers of
particles, the evaluation cost of all the methods studied are comparable; the size of the error
discriminates between them.

For both scenarios, UKI-1, UKI-2, EAKI, and ETKI converge exponentially fast. IUKF-1,
IUKF-2, IEAKF, and IETKF reach exact posterior mean and covariance matrix atT = 1. How-
ever, IEAKF� does not convergedue to the error introduced in the initialization. EKI and IEnKF
do not converge, and suffer from the presence of random noise introduced in the analysis step.
EKS and CBS do not converge, and suffer from the presence of random noise and the �nite
ensemble size.

4.3. Nonlinear two-parameter model problem

Consider the one-dimensional elliptic boundary-value problem

Š
d
dx

�
exp(� (1))

d
dx

p(x)
�

= 1, x � [0, 1] (56)

with boundary conditionsp(0) = 0 andp(1) = � (2). The solution for this problem is given by
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Figure 1. Linear two-parameter model problems: convergence of posterior mean (top)
and posterior covariance (bottom) for the over-determined system.

Figure 2. Linear two-parameter model problems: convergence of posterior mean (top)
and posterior covariance (bottom) for the under-determined system (bottom).

p(x) = � (2)x + exp(Š� (1))
�

Š
x2

2
+

x
2

�
. (57)
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The Bayesian inverse problem is formulated as �nding� � R2 from y given by

y = G(� ) + � , � =
�
� (1)

� (2)

�
and � � N (0, 0.12I ). (58)

The observations comprise pointwise measurements ofpand we consider well-determined and
under-determined cases:

€ Well-determined system

G(� ) =
�

p(0.25,� )
p(0.75,� )

�
y =

�
27.5
79.7

�
� prior � N

��
0

100

�
, I

�
. (59)

€ Under-determined system the observations

G(� ) = p(0.25,� ) y = 27.5 � prior � N
��

0
100

�
, I

�
. (60)

The reference posterior distribution is approximated by the random walk Metropolis
algorithm with a step size 1.0 and 5× 106 samples (with a 106 sample burn-in period). We
compare the UKI-1 (J = 4), UKI-2 (J = 5), EKI, EAKI, and ETKI applied to (equations (14),
(15) and (18)), iterative Kalman �lters, including IUKF-1 (J = 4), IUKF-2 (J = 5), IEnKF,
IEAKF, IETKF all with J = 50 ensemble members, applied to (12), and the EKS and CBS
methods, also withJ = 50. All algorithms are initialized at the prior distribution. The itera-
tive Kalman �lters are discretized with� � = 1

30, and further correction (see appendixB.2) is
applied on the initial ensemble members for the exactness of the initialization.

Posterior distribution approximations obtained by different algorithms, all at the 30th itera-
tion, are depicted in �gures3 and4. Two common qualitative themes stand out from these
�gures: the iterative methods based on coupling/transport have dif�culty covering the true
posterior spread, especially in the under-determined case, when compared with the new
methodologies based on our novel mean-�eld dynamical system; and application of ensemble
transform methods in either coupling/transport or mean-�eld dynamical system suffers from a
form of collapse. The �rst point may be seen quantitatively; the second does not show up so
much quantitatively because collapse is in a direction in which there is less posterior spread.
We now turn to quantitative comparisons. Again, because we use the same number of steps for
all algorithms, and commensurate numbers of particles, the evaluation cost of all the methods
studied are comparable; the size of theerror discriminates between them.

The convergence of posterior mean and posterior covariance are reported in �gures5 and6.
For both scenarios, UKI-1, UKI-2, and EAKI converge exponentially fast at the beginning and
then �atten out, since the posterior is not Gaussian [74]. The ETKI suffers from divergence for
the under-determined scenario, and for this test, ETKI is less robust compared with UKI and
EAKI. As in the linear two-parameter model problems (see subsection4.2), EKI, EKS, CBS,
and IEnKF suffer from random noise and �nite ensemble sizes. Moreover, Kalman inversions,
especially UKI and EAKI, outperform iterativeKalman �lters, as measured by accuracy for
commensurate cost, for these nonlinear tests.

4.4. Hilbert matrix problem

We de�ne the Hilbert matrixG � RN� × N� by its entries

Gi, j =
1

i + j Š 1
, (61)
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Figure 3. Nonlinear two-parameter model problem: posterior distribution approximated
at the 30th iteration for the well-determined system. Blue dots represent the reference
posterior distribution obtained by MCMC.x-axis is for� (1) andy-axis is for� (2).

Figure 4. Nonlinear two-parameter model problem: posterior distribution approximated
at the 30th iteration for the under-determined system. Blue dots represent the reference
posterior distribution obtained by MCMC.x-axis is for� (1) andy-axis is for� (2).

with N� = 100. We consider the inverse problem

y = G� � � N (0, 0.12I ) � prior � N (0,I ). (62)
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Figure 5. Nonlinear two-parameter model problem: convergence of posterior mean
(top) and posterior covariance (bottom) for the well-determined system.

Figure 6. Nonlinear two-parameter model problem: convergence of posterior mean
(top) and posterior covariance (bottom) for the under-determined system.

We no longer study iterated Kalman methods arising from coupling/transport as the preced-
ing examples show that they are inef�cient. Furthermore EKI, EKS, and CBS do not converge
and suffer from random noise and/or �nite ensemble sizes; these results are not shown. Instead,
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Figure 7. Hilbert matrix problem: convergence of posterior mean (left) and posterior
covariance (right).

we focus on the effect of the ensemble size on EAKI and ETKI, comparing with UKI. To be
concrete, we apply EAKI and ETKI withJ = N� , N� + 1 and 500, and UKI-1 and UKI-2.
Again, we initialize all algorithms at the prior distribution.

We compute the reference distribution analytically. The convergence of posterior mean and
posterior covariance are reported in �gure7. UKI-1, UKI-2, and EAKI and ETKI with more
thanN� ensemble particles, converge exponentially fast. The relatively poor performance of
EAKI and ETKI with a smaller number of ensemble particles is related to theorem1, since
EAKI and ETKI require at leastN� + 1 particles to ensure that the initial covariance matrixC0

is strictly positive de�nite.

4.5. Darcy flow problem

The two-dimensional Darcy �ow equation describes the pressure �eldp(x) in a porous medium
de�ned by a parameterized, positive permeability �elda(x, � ):

Š� · (a(x, � )� p(x)) = f (x), x � D,

p(x) = 0, x � � D.
(63)

Here the computational domain isD = [0, 1]2, Dirichlet boundary conditions are applied on
� D, and f de�nes the source of the �uid:

f (x1, x2) =

�
������

������

1000 0� x2 �
4
6

2000
4
6

< x2 �
5
6

3000
5
6

< x2 � 1

. (64)

The inverse problem of interest is to determine parameter� of the �eld a(·; � ) from observa-
tion yref, which consists of pointwise measurements of the pressure valuep(·) at 49 equidistant
points in the domain (see �gure8), corrupted with observation error� � N (0,I ). We now
describe howa depends on� , and specify a standard Gaussian prior on� .
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Figure 8. The reference pressure �eld with 49 equidistant pointwise measurements of
the Darcy �ow problem.

We write

log a(x, � ) =
�

l� K

� (l)

�
� l � l (x), (65)

whereK = Z+ × Z+ \{ 0, 0} , and

� l(x) =

�
����

����

�
2 cos(� l1x1) l2 = 0

�
2 cos(� l2x2) l1 = 0

2 cos(� l1x1) cos(� l2x2) otherwise

, � l = (� 2|l|2 + � 2)Šd (66)

and� (l) � N (0, 1) i.i.d. The expansion equation (65) can be rewritten as a sum overZ+ rather
than a lattice:

log a(x, � ) =
�

k� Z+

� (k)

�
� k� k(x), (67)

where the eigenvalues� k are in descending order. We note that these considerations amount to
assuming that loga(x, � ) is a mean zero Gaussian random �eld with covariance

C = (Š� + � 2)Šd, (68)

with Š� the Laplacian onD subject to homogeneous Neumann boundary conditions on the
space of spatial-mean zero functions; hyperparameter� denotes the inverse length scale of
the random �eld and hyperparameterd determines its Sobolev and Hölder regularity, which is
d Š 1 in our two dimensional setting [30].

In this work, we take� = 3 andd = 2. In practice, we truncate the sum (67) to N� terms,
based on the largestN� eigenvalues, and hence� � RN� . The forward problem is solved by a
�nite difference method on a 80× 80 grid. To create the datayref referred to above, we generate
a truth random �eld loga(x, � ref) with N� = 128 and� ref � N (0,I 128).
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Figure 9. Darcy �ow problem: the relative error of the permeability �eld, the opti-

mization error12� �
Š 1

2
� (yobs Š �yn)� 2 + 1

2 � �
Š 1

2
0 (mn Š r0)� 2 and the Frobenius norm� Cn�

(from left to right).

Figure 10. The estimated KL expansion parameters� (i) and the associated 3Š � con�-
dence intervals obtained by UKI-1 (J = 130), UKI-2 (J = 257), EAKI (J = 130), ETKI
(J = 130) and MCMC for the Darcy �ow problem.

The benchmark posterior distribution is approximated by the preconditioned
Crank…Nicolson algorithm with 2× 106 samples (with a 5× 105 sample burn-in period)
with the step size 0.04. Since the preceding examples have shown the bene�ts of using UKI,
EAKI and ETKI over all other methods considered, we compare only these approaches with
the benchmark. Speci�cally, we apply UKI-1, UKI-2, and EAKI and ETKI withJ = N� + 2,
again initialized at the prior distribution.

The convergence of the relativeL2 error of the mean of the loga �eld, the optimization
errors, and the Frobenius norm of the estimated posterior covariance, as the iteration pro-
gresses, are depicted in �gure9. This clearly shows that all four Kalman inversion techniques
converge within 10 iterations.

Figure10shows the properties of the converged posterior distribution, after the 10th itera-
tion, comparing them with MCMC and with the truth (referred to as •Truth•). The information
is broken down according to recovery of the{ � (i)} , visualizing only the �rst 64 modes, since the
statistical estimates of other modes obtained by MCMC and by our Kalman inversion method-
ologies are close to the priorN (0, 1)„the data does not inform them. We �rst note that the
truth values lie in the con�dence intervals determined by MCMC, with high probabilities. Sec-
ondly, we note that all four Kalman methods reproduce the posterior mean and con�dence
intervals computed by MCMC accurately. The estimated log-permeability �elds loga and the
truth are depicted in �gure11. The mean estimations obtained by the MCMC and these Kalman
inversions match well, and they both capture the main feature of the truth log-permeability �eld.
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Figure 11. The truth log permeability �eld loga, and log permeability �elds obtained by
MCMC, UKI-1 (J = 130), UKI-2 (J = 257), EAKI (J = 130), ETKI (J = 130) (left to
right).

Figure 12. The estimated KL expansion parameters� (i) and the associated 3Š � con�-
dence intervals obtained by UKI-1, UKI-2, EAKI, ETKI withJ = 31 ensemble members
and MCMC for the Darcy �ow problem.

Remark 8. In practice, for many inversion problems for �elds, the realistic number of
ensemble members is much smaller than the dimension of the state space. To probe this setting,
we repeat the test by using UKI-1, UKI-2, ETKI, and EAKI withJ = 31 ensemble members;
for UKI-1 and UKI-2, we invert for the �rst 29 and 15 coef�cients of{ � (k)} , respectively, and
for ETKI and EAKI we invert for all 128 coef�cients. The estimated KL expansion parameters
{ � (i)} for the log-permeability �eld and the associated 3Š � con�dence intervals obtained
by MCMC, and different Kalman inversions at the 10th iteration, are depicted in �gure12.
The mean and standard deviation of the coef�cients associated with these dominant modes
obtained by both UKIs match well with those obtained by MCMC. The results indicate that
the •truncate then invert• strategy used by UKIs outperforms the •direct inversion• strategy,
used here by EAKI and ETKI, when only small ensemble numbers are feasible.

4.6. Idealized global climate model

Finally, we consider using low-�delity model techniques to speed up an idealized global cli-
mate model inverse problem. The model is based on the 3D Navier…Stokes equations, making
the hydrostatic and shallow-atmosphere approximations common in atmospheric modeling.
Speci�cally, we test on the notable Held…Suarez test case [109], in which a detailed radia-
tive transfer model is replaced by Newtonian relaxation of temperatures toward a prescribed
•radiative equilibrium•Teq(� , p) that varies with latitude� and pressurep. Speci�cally, the
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thermodynamic equation for temperatureT

DT
� t

Š
RT	
Cpp

= Q (69)

(including advective and pressure work terms) contains a diabatic heat source

Q = ŠkT(� , p, ps)
�
T Š Teq(� , p)



, (70)

with relaxation coef�cient (inverse relaxation time)

kT = ka + (ks Š ka) max
�

0,
� Š � b

1 Š � b

�
cos4 �. (71)

Here,� = p/ ps, pressurepnormalized by surface pressureps, is the vertical coordinate of the
model, and

Teq = max
 

200 K,
�
315 KŠ � Ty sin2 � Š � � z log

�
p
p0

�
cos2 �

��
p
p0

� � !
(72)

is the equilibrium temperature pro�le (p0 = 105 Pa is a reference surface pressure and� = 2/ 7
is the adiabatic exponent).

The inverse problem of interest here is to determine the parameters (ka, ks, � Ty, � � z) from
statistical averages of the temperature �eldT. We impose the following constraints:

0 dayŠ1 < ka < 1 dayŠ1, 0 dayŠ1 < ks < 1 dayŠ1,

0 K < � Ty < 100 K, 0 K< � � z < 50 K.

The inverse problem is formed as follows [72],

y = G(� ) + � with G(� ) = T(� , � ) (73)

with the parametertransformation

� : (ka, ks, � Ty, � � z) =
�

1
1 + exp(� (1))

,
1

1 + exp(� (2))
,

×
100

1 + exp(� (3))
,

50
1 + exp(� (4))

�
(74)

enforcing the constraints. The observation mappingGis de�ned by mapping from the unknown
� to the 200 days zonal mean of the temperature (T) as a function of latitude (� ) and height
(� ), after an initial spin-up of 200 days.

Default parameters used to generate the data in our simulation study are

ka = (40 day)Š1, ks = (4 day)Š1, � Ty = 60 K, � � z = 10 K.

For the numerical simulations, we use the spectral transform method in the horizontal, with
T42 spectral resolution (triangular truncation at wavenumber 42, with 64× 128 points on the
latitude-longitude transform grid); we use 20 vertical levels equally spaced in� . With the
default parameters, the model produces an Earth-like zonal-mean circulation, albeit without
moisture or precipitation. The truth observation is the 1000 days zonal mean of the temperature
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Figure 13. Zonal mean temperature (left) and zonal wind velocity (right) obtained with
the T42 grid (top) and the T21 grid (bottom).

(see �gure13-top-left), after an initial spin-up, also of 200 days, to eliminate the in�uence of
the initial condition. Because the truth observations come from an average 5 times as long
as the observation window used for parameter learning, the chaotic internal variability of the
model introduces noise in the observations.

To perform the inversion, we set the prior� prior � N (0, 102I ). Within the algorithm, we
assume that the observation error satis�es� � N (0 K, 32I K2). All these Kalman inversions
are initialized with� 0 � N (0, 0.12I ), since initializing at the prior leads to unstable simulations
at the �rst iteration. The bi-�delity approach discussed in subsection3.2is applied to speed up
both UKI-1 and UKI-2. TheseJ Š 1 forward model evaluations are computed on a T21 grid
(triangular truncation at wavenumber 21, with 32× 64 points on the latitude-longitude trans-
form grid) with 10 vertical levels equally spaced in� (twice coarser in all three directions).
They are abbreviated as UKI-1-BF and UKI-2-BF. The computational cost of the high-�delity
(T42) and low-�delity (T21) models are about four-CPU hour and 0.5-CPU hour, and there-
fore the bi-�delity approach effectively reduces CPU costs. The 1000 days zonal mean of the
temperature and velocity predicted by the low-resolution model with the truth parameters are
shown in �gure13-bottom. It is worth mentioning there are signi�cant discrepancies compar-
ing with results computed on the T42 grid (�gure13-top). Whether these would be tolerable
will depend on the use to which the posterior inference is put.

The estimated parameters and associated 3Š � con�dence intervals for each component at
each iteration are depicted in �gure14. Since the prior covariance is large and the problem
is over-determined it is natural to expect that the posterior mean should be close to the true
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