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GriddingMachine, a database and 
software for Earth system modeling 
at global and regional scales
Yujie Wang  1 ✉, Philipp Köhler1, Renato K. Braghiere2,3, Marcos Longo  2,4,  
Russell Doughty  1,5, a. anthony Bloom2 & Christian Frankenberg1,2

Land and Earth system modeling is moving towards more explicit biophysical representations, 
requiring increasing variety of datasets for initialization and benchmarking. However, researchers often 
have difficulties in identifying and integrating non-standardized datasets from various sources. We 
aim towards a standardized database and one-stop distribution method of global datasets. Here, we 
present the GriddingMachine as (1) a database of global-scale datasets commonly used to parameterize 
or benchmark the models, from plant traits to vegetation indices and geophysical information and (2) a 
cross-platform open source software to download and request a subset of datasets with only a few lines 
of code. the GriddingMachine datasets can be accessed either manually through traditional HttP, or 
automatically using modern programming languages including Julia, Matlab, Octave, Python, and R. 
the GriddingMachine collections can be used for any land and Earth modeling framework and ecological 
research at the regional and global scales, and the number of datasets will continue to grow to meet the 
increasing needs of research communities.

Introduction
Land components in Earth system models (ESMs) are moving towards more explicit biophysical representa-
tion. For example, in the modeling of the soil-plant-air continuum, vegetation canopy complexity has increased 
from a single big-leaf to a multi-layered modeling approach including leaf angular distributions1, thus allowing 
for more realistic and predictive simulations, bridging Earth surface processes with remote sensing2. Further, 
the use of plant trait- and process-based stomatal models are also drawing more attention given the improved 
predictive skills compared to empirical representations3–5 and more direct link to plant physiological status6. 
However, implementing these biophysical representations globally has been challenging due to the lack of a 
complete suite of global soil and plant traits and the difficulties to assess model simulations.

The capability of recently developed terrestrial biosphere models in simulating plant physiological processes 
and canopy optical properties and bridging them to remote sensing makes it possible to constrain Earth surface 
processes using remote sensing data7–10. Notably, increasing volume and types of global scale ecological data-
sets, products, and databases are largely being made publicly available in recent years, such as multiple decades 
of satellite-based maps of vegetation indices from Moderate Resolution Imaging Spectroradiometer (MODIS) 
instruments. These global scale datasets may serve as initial or boundary conditions or as benchmark standards 
for the ESMs11,12.

However, in parallel to the great promise of the ever-increasing volume of data, harnessing these datasets is 
becoming a considerable challenge for the research communities. Typical day-to-day challenges for research-
ers emerge because the datasets (1) are posted and stored at different websites; (2) have different formats (e.g., 
GeoTIFF and NetCDF files); (3) may not be usable directly out of the box (e.g., data is converted to Bytes 
for smaller size, and thus re-scaling is required); (4) have different orientations (e.g., some from Southern to 
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Northern Hemisphere, and vice versa); (5) have different latitude and longitude setups (e.g., some exclude high 
latitude regions); (6) have different projections (e.g., cylindrical and pseudo-cylindrical); and (7) may have dif-
ferent and non-standard units. These limitations pose substantial barriers even for experienced programmers, 
given the time required to find and reformat the data. Particularly, it is very inconvenient for both beginners 
and experienced researchers who may just require a tailored subset of these broadly available scientific datasets. 
For instance, one may need to download the entire global dataset to obtain information for a few sites or a small 
region.

The emergence of the Google Earth Engine (GEE)13 has largely advanced data sharing and reuse, and the 
cloud computing platform provided further relaxes the need for extensive local storage and computation 
resource. However, GEE is not always the best solution for researchers given that users do not have direct con-
trol over the datasets for easier offline analysis and debugging. Most importantly, many public datasets circu-
late within the research communities but are not converted to GEE images. In comparison, the Application 
for Extracting and Exploring Analysis Ready Samples (AppEEARS) and European Centre for Medium-Range 
Weather Forecasts (ECMWF) offer users simple and efficient ways to request raw data subsets (limited to their 
own datasets; need to register, and download and manage the subsets manually). Therefore, it remains a question 
how to more effectively share, manage, and reuse these community-based datasets stored on local hard drives. 
One way to circumvent this issue is to build a database for these community datasets and label each with a 
unique easy-to-read tag. Using tags to automatically download and manage the datasets would largely simplify 
the user end operations and facilitate the data reuse.

Our aim is to create and maintain such a standardized collection of globally spanning datasets for biophysical 
representations in ESMs. Therefore, we need to resolve the problems listed above and distribute standardized 
datasets using tags. Our solution, GriddingMachine, is a one-stop shop for downloading, storing, exploring, and 
jointly extracting multiple datasets we have collected and reprocessed. GriddingMachine was initially developed 
in the Julia programming language14 to parameterize a new-generation ESM developed by the Climate Modeling 
Alliance (CliMA), particularly the land component—CliMA Land9,15,16. We have further generalized the model 
for the purpose of processing and distributing datasets by adding more global scale datasets other than the land 
parameters (such as remote sensing based products), and providing more user interfaces through HTTP, Matlab, 
Octave, Python, and R in addition to Julia (Fig. 1).

Results
Each dataset in GriddingMachine database is labeled with a unique tag following a general naming pattern: 
LABEL_(EXTRALABEL_)IX_JT_(YEAR_)VK, where EXTRALABEL and YEAR are optional (Table 1). Here, 
LABEL is the major data identifier (e.g., GPP for gross primary productivity), EXTRALABEL is the secondary 
data identifier to distinguish datasets within a collection (for example, GPP from different models), IX indicates 
the spatial resolution is 1/I°, JT represents the temporal resolution (H for hour, D for day, M for month, and 
Y for year), and VK means the dataset version within our collection (V1 for data from publication 1, and VN 
for data from publication N). For example, LAI_MODIS_20X_1 M_2008_V1 stands for leaf area index (LAI) 
from MODIS at 1/20° spatial resolution and 1 month temporal resolution for the year 2008, and V1 indicates 
that the dataset is the first LAI collection; VCMAX_2X_1Y_V2 stands for maximum carboxylation rate (Vcmax) 
at 1/2° spatial resolution and 1-year temporal resolution, and V2 indicates that the dataset is the second Vcmax 
collection.

Although we aim for automatic and convenient data access within diverse programming languages, we still 
provide traditional data access from HTTP servers. The compressed datasets can be manually downloaded from 
an open data archive hosted on CaltechDATA17.

Fig. 1 Pathway used to assemble and distribute the GriddingMachine database. Each dataset is (a) 
reprocessed to meet our standards for distribution, (b) compressed as a tar.gz file along with an empty label file 
GRIDDINGMACHINE, and (c) stored on publicly available HTTP servers. Then the meta information for each 
dataset is stored in Artifacts.toml, which includes the tag name, sha1 hashtag, sha256 hashtag, and downloading 
URLs. Users are able to access the datasets manually via HTTP protocols or automatically through Julia, Matlab, 
Octave, Python, and R functions aided by Artifacts.toml.

https://doi.org/10.1038/s41597-022-01346-x
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Julia support. We provide Julia language support using GriddingMachine.jl (v0.2, requires Julia 1.6+), 
which include three tested sub-modules: Collector, Indexer, and Requestor (Fig. 2). Collector is responsible for 
downloading and managing datasets; Indexer is responsible for reading downloaded datasets; and Requestor is 
responsible for requesting a subset of data directly from our server without downloading the datasets. To install 
GriddingMachine.jl, one may simply type the following in Julia REPL (read-eval-print loop):

Below, we introduce only the fundamental features of GriddingMachine.jl, and refer the readers to our 
online documentation for more details about GriddingMachine.jl at https://clima.github.io/GriddingMachine.
jl/stable/.

Dataset type LABEL EXTRALABEL IX JT YEAR VK Reference

Biomass
BIOMASS ROOT 120X 1Y — V1 20

BIOMASS SHOOT 120X 1Y — V2 21

Canopy height
CH — 20X 1Y — V1 22

CH — 2X 1Y — V2 23

Clumping index
CI — 2X, 240X 1Y — V1 24

CI — 2X 1Y — V2 25

Elevation ELEV — 4X 1Y — V1 26

Gross primary productivity
GPP MPI_RS 2X 1 M, 

8D 2001–2019 V1 27

GPP VPM 5X, 12X 8D 2000–2019 V2 28

Leaf area index LAI MODIS 2X, 10X, 20X 1 M, 
8D 2000–2020 V1 29

Land mask LM — 4X 1Y — V1 ERA5

Leaf nitrogen content
LNC — 2X 1Y — V1 30

LNC — 2X 1Y — V2 23

Leaf phosphorus content LPC — 2X 1Y — V1 30

Plant functional type PFT — 2X 1Y — V1 31

Surface area SA — 1X, 2X 1Y — V1 31

Soil color class SC — 2X 1Y — V1 31

Solar-induced chlorophyll 
fluorescence

SIF TROPOMI_740 1X, 2X, 4X, 
5X, 12X

1 M, 
8D 2018–2020 V1 18

SIF TROPOMI_740DC 1X, 2X, 4X, 
5X, 12X

1 M, 
8D 2018–2020 V1 18

SIF TROPOMI_683 1X, 2X, 4X, 
5X, 12X

1 M, 
8D 2018–2020 V2 19

SIF TROPOMI_683DC 1X, 2X, 4X, 
5X, 12X

1 M, 
8D 2018–2020 V2 19

SIF OCO2_757 5X 1 M 2014–2020 V3 32

SIF OCO2_757DC 5X 1 M 2014–2020 V3 32

SIF OCO2_771 5X 1 M 2014–2020 V3 32

SIF OCO2_771DC 5X 1M 2014–2020 V3 32

Solar-induced luminescence SIL — 20X 1Y — V1 33

Specific leaf area
SLA — 2X 1Y — V1 30

SLA — 2X 1Y — V2 23

Soil hydraulics

SOIL SWCR 12X, 120X 1Y — V1 34

SOIL SWCS 12X, 120X 1Y — V1 34

SOIL VGA 12X, 120X 1Y — V1 34

SOIL VGN 12X, 120X 1Y — V1 34

SOIL KSAT 100X 1Y — V2 35

Tree density TD — 2X, 120X 1Y — V1 36

Maximum carboxylation rate
VCMAX — 2X 1Y — V1 37

VCMAX — 2X 1Y — V2 38

Wood density WD — 2X 1Y — V1 23

Table 1. Datasets within GriddingMachine collections.
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Download data. We classify the datasets into different collections using the GriddedCollection structure, 
which includes the following fields:

•	 LABEL: a string that appears in file names, such as LAI;
•	 SUPPORTED_COMBOS: an array of string for supported combinations, such as [MODIS_2X_8D_2018_V1, 

MODIS_2X_8D_2019_V1, MODIS_2X_8D_2020_V1];
•	 DEFAULT_COMBO: a string of the default combination, such as MODIS_2X_8D_2020_V1.

Currently, we have a total of 19 categories of dataset (column Dataset type in Table 1), and 19 functions to 
construct these GriddedCollection structures accordingly:

•	 biomass_collection
•	 canopy_height_collection
•	 clumping_index_collection
•	 elevation_collection
•	 gpp_collection
•	 lai_collection
•	 land_mask_collection
•	 leaf_nitrogen_collection
•	 leaf_phosphorus_collection
•	 pft_collection
•	 sif_collection
•	 sil_collection
•	 sla_collection
•	 soil_color_collection
•	 soil_hydraulics_collection
•	 surface_area_collection
•	 tree_density_collection
•	 vcmax_collection
•	 wood_density_collection

For example, one can define a LAI collection and check supported combinations using the following 
commands:

Function query_collection returns the path to the dataset (Julia will download the file automatically to folder 
~/.julia/artifacts if the dataset does not exist):

Fig. 2 Framework of GriddingMachine.jl package (v0.2). GriddingMachine.jl contains three sub-modules: 
Collector, Indexer, and Requestor. Collector downloads and manages the datasets; Indexer reads the 
downloaded datasets; and Requestor requests a subset of data directly from the server without downloading the 
datasets.

https://doi.org/10.1038/s41597-022-01346-x
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The first method returns the path to default combination; and the second and third methods return the path 
to target dataset.

Function clean_collection! cleans up the downloaded datasets:

The first and second methods clean up all outdated datasets that were not in Artifacts.toml; the third method 
cleans up all GriddingMachine datasets; the fourth method cleans up all selected datasets; and the last method 
cleans up all datasets in a collection.

Read downloaded data. With the dataset path from query_collection, we are able to load the data using 
function read_LUT (meaning read look-up-table) in Indexer. The supported methods are

The first method loads the entire dataset (3D array in the example above); the second method loads the 8th 
layer of the dataset (only applicable for 3D datasets); the third method returns all the data at a given latitude 
(30.1°) and longitude (116.1°); and the last method returns only data on the given latitude (30.1°), longitude 
(116.1°), and cycle index (8). For the third and last methods, option interpolation is false by default and the 
function returns data that falls into the grid (latitude from 30 to 30.5° and longitude from 116 to 116.5° in this 
example). If option interpolation is true, we use the bi-linear interpolation method, and the function returns 
linearly interpolated results from its four nearest neighbours.

Request partial data. Note that functions query_collection and read_LUT are meant for downloading (if 
not exist) and reading the local dataset, which may hamper the data reusing. For example, if one only needs the 
data for a few sites, downloading gigabytes of data for these few sites would (1) be time consuming, (2) waste local 
storage, and (3) increase unnecessary load for data servers. Therefore, we provide a way to request data for specific 
sites in Requestor through function request_LUT:

https://doi.org/10.1038/s41597-022-01346-x
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The first method takes the tag name (full name), latitude (30.1°), and longitude (116.1°) as input, and returns 
the time series of LAI and its error; the second method take an extra cycle index as input, and returns only 
the data and error for the target cycle (day 57 to 64 in this example). Similar to function read_LUT, one may 
choose to interpolate the data by setting the interpolation option to false or true. What request_LUT does are 
(i) user end passes the input information to the server, (2) server end reads the data using query_collection and 
read_LUT, (3) server end returns a structured JSON file back to the user end, and (4) user end translates the 
structured JSON back to data (numbers or arrays).

Other language supports. Besides Julia, we also provide simple user interfaces for Matlab, Octave, Python 
and R to aid dataset distribution and reuse. We provide three functions for Matlab, Octave, Python and R, and 
they are (1) update_GM that downloads the latest Artifacts.toml from Github, (2) query_collection that down-
loads and returns the path of the dataset (same as that in Julia), and (3) request_LUT that requests partial data 
from the server (same as that in Julia). Different from Julia, update_GM and query_collection download the 
data to ~/GMCollections rather than ~/.julia/artifacts. Artifacts.toml is stored at ~/GMCollections/Artifacts.
toml; the compressed tar.gz files are stored in ~/GMCollections/archives; and the datasets are extracted to ~/
GMCollections/artifacts. With the dataset path, users can choose the packages they prefer to read the dataset. 
In comparison, GriddingMachine.jl updates Artifacts.toml through package releasing, and one needs to update 
GriddingMachine.jl to use the latest datasets.

Matlab. We provide Matlab language support via Matlab Toolbox (source code available at https://github.
com/Yujie-W/octave-griddingmachine). Matlab users may install and use the toolbox using

Octave. Octave language support is also provided via https://github.com/Yujie-W/octave-griddingmachine, 
which is Matlab and Octave compatible. Octave users may install and use the package using

Python. We provide Python language support via a registered Python package through PyPI (source code 
available at https://github.com/Yujie-W/python-griddingmachine), and Python users can install the package 
using pip:

https://doi.org/10.1038/s41597-022-01346-x
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To query the path to downloaded dataset or subset data directly from the server, one may use

R. We provide R language support via a package hosted on Github, and R users can install and use the package 
using

As R does not allow for returning multiple variables, data and error of the request are stored as fields of a list, 
and one can read them out using results$data and results$std.

Discussion
We recommend GriddingMachine users to use provided interfaces through Julia, Matlab, Octave, Python, and 
R to access the data. In particular, if the research is designed to run at global or large regional scales, we rec-
ommend using query_collection to download the datasets, which allows the users to use the latest datasets and 
perform offline analysis more efficiently. If the research is meant to run at smaller scales such as a few sites, we 
recommend using request_LUT for convenience. For example, Julia code below shows the simple steps of com-
paring datasets at the site level. We compared two gross primary productivity products vs. one solar-induced 
chlorophyll fluorescence for a flux tower site in North America (US-NR1; latitude and longitude are 40.0329° 
and - 105.5464°, respectively; data from the year 2019), and the result is shown in Fig. 3. In the example pre-
sented, requesting the data directly from the server avoids downloading approximately 600 MB reprocessed data 
(original datasets from three different sources are 2.6 GB):

https://doi.org/10.1038/s41597-022-01346-x
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We note here that the data management of GriddingMachine is subject to future changes and users can fol-
low on the GitHub page at https://github.com/CliMA/GriddingMachine.jl. Users can find tutorials and exam-
ples about how to contribute data at https://github.com/CliMA/GriddingMachine.jl#data-contribution.

In conclusion, we present GriddingMachine, a generalized database and software to distribute standardized 
globally spanning datasets in a user-friendly way. We provide examples that can serve as templates to load dif-
ferent types of datasets we have collected as well an easy way to request partial data from our server in five pro-
gramming languages: Julia, Matlab, Octave, Python, and R. Given the aims of GriddingMachine, we welcome the 
contribution of globally gridded data to our collection through https://github.com/CliMA/GriddingMachine.
jl/issues/62, and believe that GriddingMachine will be a useful tool for Earth system modeling and ecology 
communities.

Methods
To maximally simplify and facilitate the data reuse, we first reprocessed the collected data to standardized 
NetCDF formatted datasets (Fig. 1). We used NetCDF format because the datasets can be 3D arrays, and the 
file can be read using non-proprietary software. Then, we compressed each dataset as a tar.gz file, and stored 
the compressed datasets on public HTTP servers. Last, we stored the meta information in an Artifacts.toml file, 
and provided user friendly functions to automatically retrieve the datasets for multiple programming languages 
such as Julia, Matlab, Octave, Python, and R. Note here that Artifacts.toml file is often used in Julia to host meta 
information of data containers named artifacts. The containers may contain any other kind of data that would be 
convenient to place within an immutable, life-cycled data store. These containers, (called artifacts) can be cre-
ated locally, hosted anywhere, and automatically downloaded and unpacked upon request. In GriddingMachine.
jl, we used this artifact feature to redistribute the reprocessed datasets, which are not supposed to change with 
time. Alternatively, users may also download the datasets manually from the HTTP servers.

Data reprocessing. The raw datasets we collected were in various formats and not standardized (for exam-
ple, some datasets were scaled but the scaling factors were not noted within the dataset itself). Thus, we repro-
cessed each dataset before distributing it to the public, and the standards are

•	 The dataset is stored in a NetCDF file
•	 The dataset is either a 2D or 3D array
•	 The dataset is cylindrically projected (WGS84 projection)
•	 The first dimension of the dataset is longitude
•	 The second dimension of the dataset is latitude
•	 The third dimension (if available) is the cycle index, e.g., time
•	 The longitude is oriented from west to east hemisphere (−180° to 180°)
•	 The latitude is oriented from south to north hemisphere (- 90° to 90°)
•	 The dataset covers the entire globe (missing data allowed)
•	 Missing data is labeled as NaN (not a number) rather than an unrealistic fill value
•	 The dataset is not scaled (linearly, exponentially, or logarithmically)
•	 The dataset has common units, such as μ mol m−2 s−1 for maximum carboxylation rate
•	 The spatial resolution is uniform longitudinally and latitudinally, e.g., both at 1/2°
•	 The spatial resolution is an integer division of 1°, such as 1/2°, 1/12°, 1/240°
•	 Each grid cell represents the average value of everything inside the grid cell area (as opposing to a single point 

in the middle of the cell)
•	 The label for the data is “data” (for conveniently loading the data)
•	 The label for the error is “std” (for conveniently loading the error)
•	 The dataset must contain one data array and one error array besides the dimensions
•	 The dataset contains citation information in the attributes
•	 The dataset contains a log summarizing changes if different from original source

Fig. 3 Example of simple dataset requests using GriddingMachine. The requested data are gross primary 
productivity (GPP) from27 (MPI GPP, olive symbols) and28 (VPM GPP, cyan symbols) and day length corrected 
solar-induced chlorophyll fluorescence (dcSIF) from18 (TROPOMI SIF, red symbols).
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Each reprocessed NetCDF file contains four (2D dataset) or five (3D dataset) fields (see Table 2 for the details 
of the fields and attributes of the reprocessed datasets). We note that there could be infinite number of fields in 
a NetCDF file; but for the ease of automatically reading the datasets, we only included data and std fields in one 
reprocessed datasets. For example, the original TROPOMI solar-induced chlorophyll fluorescence (SIF) datasets 
contain both uncorrected SIF and day length corrected SIF18,19, and we partitioned the file to separate files to 
allow for more automated data requests.

Data packaging. After data reprocessing, we compressed each dataset along with an empty 
GRIDDINGMACHINE file as a tar.gz file (contains 2 files). The empty GRIDDINGMACHINE file labels the 
NetCDF file as a GriddingMachine dataset (used to clean up outdated datasets). For example, any folder with 
the empty file GRIDDINGMACHINE will be treated as a GriddingMachine artifact, and the hashtag for this 
artifact is the same as the folder name. If this hashtag does not exist in Artifacts.toml, then this GriddingMachine 
artifact will be marked as outdated. Users can delete the outdated GriddingMachine using clean_collections!. 
The NetCDF dataset file name and the tag name are the same and follow a general naming pattern: LABEL_
(EXTRALABEL_)IX_JT_(YEAR_)VK. See Table 1 for current collections and https://github.com/CliMA/
GriddingMachine.jl/issues/62 for the growing collection list and detailed change logs for each dataset.

Meta information of all the datasets is stored in Artifacts.toml, and each item of the toml file includes the 
following: tag name, SHA1 hash value, SHA256 hash value, and downloading URLs. Here SHA stands for Secure 
Hash Algorithm, and it was used to compute a unique hashtag for each dataset, thus aiding data verification 
when users use the data. Through Artifacts.toml, we provided functions to automatically download and load the 
datasets in multiple programming languages.

Data availability
The compressed datasets can be downloaded from CaltechDATA17.

Code availability
The code can be found at https://github.com/CliMA/GriddingMachine.jl under the Apache 2.0 License. The exact 
version of the package used to produce the results presented in this paper is also archived on CaltechDATA along 
with the datasets17.
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Field Dimension Description Attributes

lon 1D array Longitude in the center of a grid unit°

description: Latitude

lat 1D array Latitude in the center of a grid unit°

description: Longitude

ind 1D array Cycle index (only available in 3D datasets) unit: -

description: Cycle index

data 2D/3D array Data in the center of a grid longname: long name of the data

unit: unit of the data

about: general information

authors: authors of the dataset source publication

year: year of the data source publication

title: title of of the data source publication

journal: journal of the data source publication

doi: DOI tag of the data source publication

changeN: Change log of the N th change we made

std 2D/3D array Error of data in the center of a grid same as “data” field

Table 2. Fields and attributes of the reprocessed NetCDF datasets.
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