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Abstract

Testing, contact tracing, and isolation (TTI) is an epidemic management and control

approach that is difficult to implement at scale because it relies on manual tracing of con-

tacts. Exposure notification apps have been developed to digitally scale up TTI by harness-

ing contact data obtained from mobile devices; however, exposure notification apps provide

users only with limited binary information when they have been directly exposed to a known

infection source. Here we demonstrate a scalable improvement to TTI and exposure notifi-

cation apps that uses data assimilation (DA) on a contact network. Network DA exploits

diverse sources of health data together with the proximity data from mobile devices that

exposure notification apps rely upon. It provides users with continuously assessed individual

risks of exposure and infection, which can form the basis for targeting individual contact

interventions. Simulations of the early COVID-19 epidemic in New York City are used to

establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more

infections than contact tracing when both harness the same contact data and diagnostic test

data. This remains true even when only a relatively small fraction of the population uses net-

work DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and

complies with individual contact interventions, targeting contact interventions with network

DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by

expanding the computational backend of existing exposure notification apps, thus greatly

enhancing their capabilities. Implemented at scale, it has the potential to precisely and effec-

tively control future epidemics while minimizing economic disruption.
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Author summary

During the ongoing COVID-19 pandemic, exposure notification apps have been devel-

oped to scale up manual contact tracing. The apps use proximity data from mobile devices

to automate notifying direct contacts of an infection source. The information they provide

is limited because users receive only rare and binary alerts. Here we present network data

assimilation (DA) as a new digital approach to epidemic management and control. Net-

work DA uses the same data as exposure notification apps but uses it more effectively to

provide frequently updated individual risk assessments to users.

Network DA is based on automated learning about individuals’ risk of exposure and

infection from crowd-sourced health data and proximity data. The data are aggregated

with models of disease transmission to produce statistical assessments of users’ risks. In an

extensive simulation study of the COVID-19 epidemic in New York City (NYC), we show

that network DA with diagnostic testing achieves epidemic control with fewer than half

the deaths that occurred during NYC’s lockdown, while isolating a far smaller fraction of

the population (typically only 5–10% of the population at any given time).

Implemented at scale, then, network DA has the potential to effectively control epi-

demics while minimizing economic and social disruption.

Introduction

Until a majority of the global population has reached immunity against continuously evolving

virus variants through vaccination or infection, the ongoing COVID-19 pandemic and future

epidemics will need to be fought with non-pharmaceutical interventions (NPIs) [1, 2]. They

include social distancing, mask usage, and restrictions of mass gatherings. But NPIs such as

lockdowns come at catastrophic costs to individuals, economies, and societies, with dispropor-

tionate burdens carried by disadvantaged groups [3, 4]. Even if imposed only intermittently

and regionally, lockdowns are an inefficient means of epidemic management and control: they

isolate much of the population, although even at extreme epidemic peaks, only a small fraction

is infectious [5, 6]. If individuals who are at high risk of being infectious could be identified

before they infect others, control measures could be made more efficient by targeting them to

this high-risk group.

Testing and contact tracing have been discussed and partly implemented as strategies to

identify individuals who are at high risk of being infectious [7–9]: testing determines who is

infectious, contact tracing identifies those who may have been exposed through contact with

an infectious individual, and this high-risk group is then isolated. However, controlling the

COVID-19 epidemic by testing, contact tracing, and isolation (TTI) has been complicated by

frequent asymptomatic and presymptomatic transmission, which support silent spread, and a

short serial interval, the period between the onset of any symptoms in infector and infectee [7,

10–12]. Even in ideal scenarios, contact tracing needs to identify upward of 75% of infections

to achieve epidemic control [8, 11]. Quickly diagnosing such a large fraction of infections and

manually identifying exposed individuals requires testing and a contact tracing workforce at a

scale that has been challenging to realize in most countries [13, 14].

To scale up the contact tracing component of TTI without a massive expansion of the work-

force, exposure notification apps have been developed. They rely on proximity data from

smartphones or other mobile devices to identify close contacts between users [15, 16]. If an

individual user is identified as being infectious, prior close contacts are notified and can then
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self-isolate. The exposure notification is deterministic (a user is only notified when potentially

exposed), and it only uses nearest-neighbor information on the network of close contacts

among users. Exposure notification apps have not seen widespread use, in part perhaps

because of early implementation difficulties and privacy concerns but also because they do not

provide users with information except in the rare case when they receive an exposure notifica-

tion [17]. Nonetheless, where they have been used, these apps have helped prevent the spread

of infections [18].

Here we present a new and much more effective way of exploiting the same information on

which exposure notification apps rely. Unlike these apps, however, this method provides users

with continuously updated assessments of their individual risks. The core idea is to learn about

individual risks of exposure and infectiousness by propagating crowdsourced information

about infection risks over a dynamic contact network assembled from proximity data from

mobile devices. Instead of the deterministic assessments of exposure notification apps, our

approach exploits data from diverse sources probabilistically. Various types of information,

including their uncertainties, can be harnessed. For example:

• Diagnostic tests, including sensitive but slow molecular tests, less sensitive but rapid antigen

tests, or pooled diagnostic tests [19].

• Serological tests, which indicate a reduced probability of susceptibility when antibodies spe-

cific to SARS-CoV-2 (or the causative agent of another targeted disease) are detected.

• Self-reported clinical symptoms, elevated body temperature readings, or other wearable sen-

sor data, which can indicate an elevated probability of infectiousness and virus transmission

[20, 21].

Quantification of individual risks is achieved by assimilating data into a model of virus

transmission and disease progression defined on a dynamic contact network assembled from

proximity data. For decision making, periodically updated individual risks of having been

exposed or of being infectious take the place of the deterministic assessments in exposure noti-

fication apps. The probabilistic network approach propagates data farther along the contact

network than contact tracing, consistent with models of disease progression and rates of virus

transmission. It harnesses more information than contact tracing, both by being able to

include diverse data sources with their uncertainties and by exploiting information inherent in

the network structure itself: an individual with many contacts generally is at greater risk of

having been exposed than an individual with fewer contacts [22, 23], and such contact rates

are available from the proximity data from mobile devices.

The network and the information it contains are dynamically updated in periodic data

assimilation (DA) cycles. These cycles resemble the daily DA cycles that weather forecasting

centers use operationally [24]. The quantitative information that is provided by the risk assess-

ment platform we outline in what follows can be used in similar ways as weather forecasts: to

inform personal decisions by users based on their desire to avoid risk (in the weather forecast-

ing analogy, staying home rather than going on a mountain in the face of a likely downpour)

and to inform public policy when aggregate risk measures indicate that wider mandates are

necessary (analogous to evacuating a city to protect lives and avoid overwhelming public

health and social infrastructures when a hurricane is likely to make landfall).

Network data assimilation

Our point of departure is a variant of the widely used susceptible–exposed–infectious–resistant

(or recovered) (SEIR) model of epidemiology, extended through inclusion of hospitalized (H)
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and deceased (D) compartments to an SEIHRD model [25]. Compartmental epidemiological

models have traditionally been applied on the level of aggregated individuals (e.g., the popula-

tion of a city or country) [26]; here we follow more recent work and apply the SEIHRD on an

individual level on a time-dependent contact network [23, 27]. Each individual is represented

by a node on the network; time-dependent edges between the nodes are established by close

contacts between individuals, as recorded by proximity data from mobile devices. Virus trans-

mission can occur during close contacts from infectious or hospitalized nodes to susceptible

nodes, which thereupon become exposed. The probability of transmission increases with con-

tact duration, and the transmission rate can vary from node to node and with time, for exam-

ple, to reflect time-varying transmission rates resulting from virus mutations or a reduced

transmission rate when masks are worn. From being exposed, nodes progress to becoming

infectious, and later they may progress to requiring hospitalization, recover, or die.

At any time t, each node i is in one of the six health and vital states Si(t), Ei(t) etc. of the

SEIHRD model (see Methods). Network DA learns about the probabilities hSi(t)i, hEi(t)i, etc.

of finding an individual node i at time t in each of the different states. We adopt a sequential

Bayesian learning approach that propagates an ensemble of individual probabilities hSi(t)i,
hEi(t)i, etc. across the network and periodically updates them and the SEIHRD model parame-

ters with new data [10, 28–30]. Data falling within a DA window of length Δ (typically, Δ� 1

day) are incorporated into the model by adjusting the ensemble to minimize the misfit to the

data in the window. An interval Δ later, the updating procedure is repeated (see Methods

for details). Such DA cycles and the underlying algorithms are used daily in weather forecast-

ing to estimate up to 109 variables characterizing the state of the atmosphere; they easily scale

to network epidemiology models with millions of nodes or more. Essentially all types of data

and their error characteristics can be assimilated with this approach, even data that are less

sensitive to infectiousness, such as readings of heart rates [31] or body temperatures [20, 21]

(Fig 1).

Fig 1. Schematic of the personalized risk assessment platform. Proximity-tracking data from mobile devices is used to assemble a contact network, in which nodes

represent individuals and edges represent close contacts between individuals. An epidemiological model defined on the contact network is then fused with diverse

health data, including diagnostic tests, hospitalization status, and possibly data such as body temperature readings. The model spreads risk of infectiousness from a

positive individual (red) to others, taking into account knowledge about disease progression, the time and duration of contacts, and the use of personal protective

equipment (PPE), among other factors. The result of the network DA is an assessment of individual risks, for example, of being infectious, which then can be used to

target contact interventions.

https://doi.org/10.1371/journal.pcbi.1010171.g001
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Synthetic network for proof-of-concept

To illustrate the methods with simulated data in a computational proof-of-concept, we con-

struct a large synthetic contact network with N = 97, 942 nodes and about 1 million connec-

tions among them. The network has typical characteristics of a human contact network. It has

a time-dependent contact rate minimum at night and a maximum midday, and it has a con-

nectivity (degree) distribution similar to human contact networks: there are many individuals

with few connections and a few highly connected individuals who are more likely to become

superspreaders [32] (S5 and S6 Figs).

The network also contains a block representing hospitals, where hospitalized patients are

connected to healthcare workers, who in turn are connected to the community in the rest of

the network. Transmission rates in hospitals are reduced by a factor of 10 to reflect the use of

PPE, which has proven effective in making SARS-CoV-2 transmission in hospitals rare

(Methods). The purpose of explicitly including hospitals in the network architecture is twofold:

first, to illustrate how reliable data such as hospital admittance records can be incorporated in

the network DA approach; second, to enable comparison of hospitalization rates in the simu-

lated and real epidemic while mimicking the reduced transmission rate in hospitals. Realistic

human contact networks contain other structures, such as households, workplaces, and

schools [33]. Such features are not explicitly taken into account in our synthetic network archi-

tecture; rather, contact clusters arise randomly in the synthetic network. In the real world,

such clusters would arise naturally in the contact network assembled from proximity data,

without the need to account for them explicitly.

As surrogates for real-world health data, we use stochastic simulations of the epidemiology

model for the state variables Si(t), Ei(t), etc. on the network. We reproduce various scenarios of

the early COVID-19 epidemic in New York City (NYC), beginning during March 2020.

Because age is an important risk factor for COVID-19 severity, we assign ages to nodes based

on the age distribution of NYC and use them to model age-dependent disease progression

according to current knowledge about COVID-19 (Methods). While we assign ages to nodes

randomly, the realism of the model could be improved with age-stratified contact patterns [34,

35]. With the resulting surrogate worlds of contact patterns and disease progression, we

explore how individual risk assessment and epidemic management and control can be

achieved in what-if scenarios.

Results

Lockdown and world avoided

As an illustrative example, we simulate the evolution of an epidemic that, when scaled up from

our network size to the NYC population of 8.3 million, resembles the early evolution of the

COVID-19 epidemic in NYC in 2020 (Fig 2).

If the contact rate on the network remains unchanged in the simulations, the number of

infections and deaths rises from early March into April, with daily deaths reaching a peak of

around 21 per 100,000 population in the second half of April.

However, this world was avoided by a lockdown, which became mandatory in NYC from

March 22 onward. In its wake, the number of daily new cases and deaths began to decline

from mid-April onward (Fig 2). We can reproduce similar behavior in the stochastic simula-

tions by reducing the average contact rate of all nodes by 58% starting March 25 (Fig 2). The

infection rates in the stochastic simulations exceed the number of confirmed cases in NYC,

presumably because the latter undercount actual infections [37]. However, the death rates in
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the stochastic simulations are close to the NYC death rate (Fig 2). The hospitalization rates in

the simulation also track the actual hospitalization rates closely (S8 Fig).

Thus, the simulated epidemics on the synthetic network reproduce statistics similar to the

actual early epidemic in NYC, with realistic parameter choices for transmission rates and dis-

ease progression (Methods). Notwithstanding the simplifications of the network structure, this

points to the qualitative adequacy of the synthetic network epidemiology model as a testbed

for network DA, which makes no a priori assumptions about the structure of the network.

Accuracy of individual risk assessment

To demonstrate the accuracy of individual risk assessments, we assume the network DA plat-

form has ~N � N users who exchange proximity data with each other, with 25% to 100% of the

population in the user base (i.e., 0:25 � ~N=N � 1). In an idealization, the contact patterns of

individuals within the user base are assumed to be known completely; the contact patterns of

individuals outside the user base are assumed unknown. We also assume the number of exter-

nal contacts of individuals in the user base to be known, for example, from proximity-sensing

Fig 2. Evolution of an outbreak in surrogate-world simulations with a lockdown (blue) and without (orange). The left column shows infection rates and the right

column death rates. Upper row for cumulative counts and lower row for daily counts, smoothed with a 7-day moving average filter. Red bars represent confirmed and

probable COVID-19 deaths and confirmed infection rates for New York City [36], with the red axis labels on the right for confirmed infection counts. Solid lines

indicate the corresponding counts in the simulations, with the black axis labels on the left for infections on the network. (The axes for infections in the simulations are

stretched by a factor 10 relative to the axes for confirmed NYC infections, reflecting the undercount of infections by confirmed cases [37]). The light lines show 20

simulations that only differ by random seeds, with the thicker lines indicating the ensemble mean; thus, they give an indication of sampling variability. The average

contact rate for all nodes is reduced by 58% from March 25, 2020 onward to mimic the lockdown effect (blue solid line).

https://doi.org/10.1371/journal.pcbi.1010171.g002
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devices that can also detect devices of non-users. (However, we have verified that this assump-

tion can be replaced by only assuming knowledge of the average number of external contacts,

without material effects on the results; see Methods and S15 and S16 Figs). For subsets of the

~N users, we assimilate results of simulated rapid diagnostic tests from the corresponding

nodes in the surrogate-world simulation. A fraction f = 1%, 5%, or 25% of the user base is

assumed to be tested daily, with results available on the day of test administration; that is,

every user is tested on average every 100, 20, or 4 days (Methods). Testing the population of a

major metropolitan center such as NYC every 100 or 20 days is achievable with current testing

capacity. For more limited user bases ( ~N=N � 1), test rates of 25% per day within the user

base are locally achievable and in fact are routine, for example, on some college campuses.

We first illustrate network DA in the worst-case scenario of the free-running synthetic epi-

demic, in which contact patterns do not change. DA begins on March 5. We show results for

April 9, near the epidemic peak, when about 7% of the population are infectious, and for April

30, when new infections are waning (Fig 2). (In this free-running epidemic, the maximum

prevalence of infectiousness is considerably higher than in the lockdown simulations, in which

prevalence peaks at 1.5%–2%—more in line with what actually occurred during the lockdown

in NYC).

We classify users i as possibly infectious (“positive”) when the estimated probability of

infectiousness hIi(t)i exceeds a threshold cI. The true positive rate (TPR)—the rate at which

users who are infectious in the stochastic surrogate-world simulation are classified as

positive—naturally increases as the classification threshold cI decreases; at the same time, the

positive predicted fraction (PPF)—the rate at which users overall are classified as positive,

whether correctly or incorrectly—also increases because the false positive rate (FPR) increases.

Receiver operating curves (ROC) trace out these competing changes in TPR and PPF (or FPR)

as the classification threshold cI is varied (Fig 3). Choosing a classification threshold cI means

finding a trade-off between wanting a high TPR while keeping FPR and hence PPF low.

In the ideal albeit unrealistic scenario when the user base encompasses the whole popula-

tion ( ~N=N ¼ 100%), TPRs for April 9 are 12%, 19%, and 47% for a PPF of 8% and test rates

from f = 1%, 5%, and 25%. Later in the epidemic, for April 30, TPRs are 13%, 27%, and 59%

(Fig 3A and 3B). That is, the classification results improve as the network model learns

about the evolution of the epidemic. The classification results are insensitive to the user base

coverage ~N=N: the accuracy of the classification does not change for user bases consisting of

neighborhoods in the network covering between 25% and 100% of the total population, even

though the scenarios with more limited user bases only use contact information for the users,

not for non-users (Fig 3C and 3D). The results are also insensitive to the user base topology

(S7 Fig): classification performance is not substantially affected whether the user base consists

of neighborhoods in the total population network (Fig 3) or of randomly selected nodes (S9

Fig).

To put these results in context, compare them with the following two traditional

approaches:

• If only users with positive diagnostic tests are classified as positive, TPRs reach 0.8%, 4%,

and 22% for test rates f = 1%, 5%, and 25%, respectively, with PPFs 0.07%, 0.4%, and 1.8% on

April 9 and corresponding TPRs of 1%, 4%, and 23% with PPFs 0.02%, 0.1%, and 0.7% on

April 30 (Fig 3A and 3B, solid circles). This test-only TPR is close to but slightly smaller than

f because the test sensitivity is less than 100%. Classification by network DA can achieve

much higher TPRs than testing alone, especially at low test rates, at the expense of increased

but still modest PPFs.
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• Contact tracing and exposure notification apps classify as positive users with positive diag-

nostic tests, plus their potentially exposed nearest neighbors on the network. If, following

standard contact tracing protocols, individuals are classified as positive if, over the 10 days

preceding the diagnosis, they had at least one contact of more than 15 minutes length with a

user who had a positive diagnostic test, the so-obtained contact-tracing TPRs for April 9 are

2.4%, 11%, and 45% for test rates of f = 1%, 5% and 25%, with PPFs of 1%, 5% and 23% (Fig

3A and 3B, open circles). For April 30 the corresponding TPRs are 2%, 6%, and 32% with

PPFs 0.2%, 1.5%, and 7.6%. Network DA exploits the same data as contact tracing and expo-

sure notification apps but achieves substantially higher TPRs at the same PPF. For example,

at the same PPF as contact tracing, network DA achieves about a 40% higher TPR than con-

tact tracing for April 9, and about a 100% (factor 2) higher TPR for April 30 (Fig 3A and 3B,

vertical lines above open circles). That is, network DA in this synthetic example exploits the

exact same data as contact tracing or exposure notification apps, but it does so much more

effectively.

Fig 3. Receiver operating characteristic (ROC) curves for classification as possibly infectious. ROC curves trace out the true positive rate (TPR) vs. the

predicted positive fraction (PPF) as the classification threshold is varied. TPR and PPF are given relative to the user base size ~N . Green shades of the ROC curves

from lighter to darker correspond to increasing diagnostic test rates f. Left column for April 9; right column for April 30. (a, b) For the ideal user base of
~N=N ¼ 100%. For comparison, the filled circles are for a test-only scenario when only users with positive diagnostic tests are classified as positive. (The 1%/day

case falls outside the plotting region; values for panel (a) are (7×10−4, 0.008) and for (b) are (2×10−4, 0.01).). The open circles are for a contact-tracing scenario in

which additionally prior close contacts of users with positive diagnostic tests are classified as positive. Also shown is a sensors-only scenario in which 75% of the

user base is assumed to provide daily body temperature readings. (c, d) For user bases consisting of neighborhoods in the network covering 25%, 50%, and 75% of

the total population (S7 Fig), with the same test rates f in shades of green as in (a, b). The black dashed line represents a random classifier that provides a lower

bound on performance.

https://doi.org/10.1371/journal.pcbi.1010171.g003
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Network DA can also be used to assess quantitatively to what extent lower-fidelity data can

improve classification. As an example, we conducted a set of experiments in which 75% of the

users were assumed to report body temperatures daily—for example, with wearable sensors

[21]—with infectiousness indicated by elevated temperature readings with 20% sensitivity

[20]. Such temperature readings improve the classification when no or few (f = 1%) diagnostic

tests are available; however, they do not provide a substantial benefit when f = 5% of the user

base or more can be tested daily (Fig 3A and 3B). Nonetheless, if widely adopted, temperature

sensors can provide a modest benefit when diagnostic testing capacity is low [21].

The results show that network DA allows identification of a large fraction of infectious indi-

viduals, provided widespread testing is available. The improved identification of infectious

individuals over traditional methods is insensitive to the fraction of the population covered by

the user base, to the user base topology, and to stochastic variability of the epidemic. Network

DA extends classification beyond the nearest network neighbors on which contact tracing and

exposure notification apps focus. This gives it an advantage especially when testing capacity is

limited.

The capability of network DA to identify infectious individuals can be used to tailor indi-

vidualized contact interventions for epidemic management and control. For epidemic man-

agement and control to be effective, however, it is important not only that the classification

accuracy is high but also that the user base coverage is sufficiently large so that a large fraction

of infectious individuals can be identified in the population, rather than just within the user

base.

Risk-tailored contact interventions

The individual risk assessments can be used to prompt those who are classified as possibly

infectious for contact interventions. As an illustrative example of such individual contact inter-

ventions, we assume that users of the app self-isolate by reducing their contact rate with others

by 91%, to an average of 4 contacts per day, during the time when they are classified as positive

and 5 days thereafter; all others in the population, whether app users or not, do not change

their behavior. As a baseline for comparison, we present TTI scenarios with the same contact

rate reduction but continuing over 14 days after diagnosis or identification as possibly exposed

through contact with an infectious individual. For this baseline TTI scenario, an individual is

classified as exposed if over the preceding 10 days, they had at least one contact lasting more

than 15 minutes with an individual who had a positive diagnostic test; that is, the contact trace

stage of this baseline TTI emulates techniques used in exposure notification apps, relying on

the same data as those available for network DA in our synthetic examples. For a direct and

fair comparison with network DA, TTI compliance is assumed to be confined to the user base.

We use uniform testing regimes with test rates f = 1%, 5%, and 25% within the user base. As

classification threshold, we choose a fixed threshold cI = 1%, resulting in TPR ≳ 40% and PPF

≲ 9% when contact interventions commence. Choosing the classification threshold cI adap-

tively, in response to current prevalence of infectiousness in the population, may further

improve the results.

In the idealized but unrealistic case with full user base coverage ( ~N=N ¼ 100%), the epi-

demic is more strongly suppressed with the network DA interventions than in the lockdown

scenario, with 50–70% fewer cumulative deaths (Fig 4). However, whereas in the lockdown

scenario the entire population has reduced contacts, with network DA only a small fraction of

the population self-isolates. The self-isolation fraction has an initial peak of 15–17% for about

a week and then falls quickly to 5–10%, with damped relaxation oscillations over several weeks

in the case with lower test rates (f = 5%); 50% of those who isolate do so for 7 days or less, and
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90% for 14 days or less. That is, in this idealized case, risk-tailored self-isolation achieves effec-

tive epidemic control with isolation of only a small fraction of the population at a time. Net-

work DA does not squash daily infections to zero, because the classification threshold cI was

chosen as a compromise between wanting a reliable classification with a high TPR while avoid-

ing isolation of a too large fraction of the population with a too high PPF (Fig 3). For compari-

son, TTI with 100% compliance does not achieve epidemic control at a test rate f = 1%; at a test

rate f = 5%, cumulative deaths are 3 times higher than with network DA because TTI misses

more infections than network DA. At the test rate f = 25%, the cumulative death rate with TTI

is comparable to or lower than with network DA, but at the expense of a 2–5 times higher iso-

lated fraction of the population. Whereas the performance of TTI is strongly test-rate depen-

dent, that of network DA is less sensitive to test rate, and it is always more efficient than TTI.

In the somewhat more realizable case with ~N=N ¼ 75% user base coverage, we simulate a

demanding scenario in which testing and contact interventions are confined to the user base;

no contact information among non-users is harnessed, and non-users maintain their contact

patterns without isolation. In this case, risk-tailored self-isolation still achieves epidemic con-

trol at all test rates of f = 1%, 5%, and 25% within the user base (Fig 5), and attains a cumulative

death rate similar to the 100% user base. The fraction of the population in isolation again

peaks at just over 15% initially and then drops to 5–10%. As before, TTI with 75% compliance

Fig 4. Comparison of different contact intervention scenarios for full user base with ~N=N ¼ 100%. Shown are the lockdown scenario (blue) from Fig 2, the results

of network DA and isolation of positive individuals for test rates f = 1%, 5%, and 25% (greens), and the results of TTI with the same test rates as for network DA

(purples).

https://doi.org/10.1371/journal.pcbi.1010171.g004
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and with the highest test rates (f = 25%) also achieves epidemic control, but with a higher iso-

lated fraction of the population. At the test rate f = 5%, TTI results in an about four times

higher cumulative death rate than isolation tailored by network DA, which additionally iso-

lates fewer individuals. TTI fails to achieve epidemic control at a test rate f = 1%.

With a further reduced user base coverage of ~N=N ¼ 50%, classification remains accurate,

and isolation tailored by network DA can still achieve epidemic control and can remain more

effective than a lockdown in preventing infections and deaths (S11 Fig). The initial fraction of

the population in isolation increases to around 30%, and then drops again to between 5–10%.

However, this means that initially, the majority of the user base (50% of the population) is in

isolation, which creates perverse incentives: it effectively puts the user base, but not others, in a

lockdown. TTI with 50% compliance fails to control the epidemic for test rates below f = 5%

but still achieves some control at f = 25%, albeit with a higher isolated population fraction than

with network DA.

For the yet smaller user base coverage of ~N=N ¼ 25%, classification remains accurate (Fig

3); however, here the dominance of non-users within the population, who do not isolate, rules

out epidemic control (S13 and S14 Figs). As with any epidemic management measure, control

cannot be achieved with low compliance rates.

These results for reduced user bases are for sub-networks consisting of neighborhoods in

the overall population network. Results for user bases consisting of nodes selected at random

Fig 5. Comparison of different contact intervention scenarios for a user base with ~N=N ¼ 75%. Plotting conventions as in Fig 4. TTI here is confined to the same

user base as network DA, implying 75% compliance.

https://doi.org/10.1371/journal.pcbi.1010171.g005
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from the overall population are qualitatively similar for ~N=N ¼ 75%, albeit with an adjusted

classification threshold and a higher fraction of the population in isolation (S10 Fig). For

~N=N ¼ 50% with a random user base, network DA, while still being able to identify a large

fraction of infectious individuals in the user base (S9 Fig), ceases to be effective for epidemic

control (S12 Fig); similar behavior is observed in the ~N=N ¼ 25% case. That is, while network

topology was rather unimportant for the accuracy of classification, it does play a role for the

effectiveness of epidemic management and control strategies. It is possible the performance of

network DA in managing the epidemic may be improved with data-adaptive classification

thresholds.

In scenarios in which the user base and/or test rates are too small to achieve epidemic con-

trol, there is still a pronounced reduction in the cumulative death rate of users relative to the

general non-user population (Fig 6). For test rates f = 1%, 5%, and 25% per day within the

~N=N ¼ 25% user base consisting of neighborhoods in the overall population network, the

cumulative death rate is respectively 29%, 48%, and 42% lower than the death rate among

non-users. Additionally, although the contact interventions are confined to the user base, the

death rate in the non-user population is still reduced by about 50% compared with the no-

intervention scenario (Fig 2). For a ~N=N ¼ 25% user base consisting of nodes selected at ran-

dom, the results are qualitatively similar: Death rates among users relative to non-users are

reduced by 47%, 52%, and 56% for respective test rates f = 1%, 5%, and 25% (S17 Fig).

That is, risk-tailored isolation on the basis of network DA generally outperforms TTI as an

epidemic management and control approach when both are presented with the same contact

and test data. Even when it does not achieve epidemic control because of low compliance

rates, it still offers advantages to users in terms of reduced death rates.

Discussion

We have demonstrated a platform concept for individual health risk assessment, which

exploits the same proximity data from mobile devices that exposure notification apps rely

upon but is substantially better at identifying infectious individuals. It achieves these gains by

assimilating crowdsourced data from diverse sources into an epidemiological model defined

on a contact network. Network DA provides informative and actionable risk assessments for

individuals, even when only a modest fraction of the population uses the app necessary to

obtain proximity data. The accuracy of the risk assessments is largely independent of the frac-

tion of the population using the platform and of the user base topology; it improves with

increasing diagnostic test rates, as should be expected.

Fig 6. Cumulative death rate of users vs. non-users for the ~N=N ¼ 25% user base consisting of neighborhoods in the overall population network.

Individual contact interventions are applied within the user base from March 15 onward.

https://doi.org/10.1371/journal.pcbi.1010171.g006
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When the user base is sufficiently large (covering around 75% of the population), the plat-

form can be used to tailor interventions that are more efficient for epidemic management and

control than lockdowns or TTI. For example, with a user base covering 75% of the population

and users tested every 20 days, simulations for NYC showed that risk-tailored self-isolation

achieves epidemic control with 63% fewer deaths than during NYC’s lockdown, with typically

only 5–10% of the population in isolation at any given time. This risk-tailored isolation

approach is more effective at preventing infections and deaths than a TTI approach that uses

the same contact and diagnostic test data. Our experiments were solely based on self-isolation

among app users, without considering other public health interventions. As a result, 75% cov-

erage may be a conservative estimate. In reality, multiple non-pharmaceutical interventions

will likely be employed simultaneously at the population level, which may reduce the user cov-

erage required to achieve epidemic control.

We have produced a modular codebase that allows for exploration and benchmarking of

tools to manage and control epidemics in a synthetic setting. To validate and further optimize

our choices of diagnostic test and intervention strategies, further analyses are required. For

example, our results may be improved by the inclusion of additional information from the

contact network or more data-adaptive use of the risk assessments provided by network DA.

Additionally, it is possible to learn about the parameters that appear in the network epidemiol-

ogy model; we have only skimmed the surface with respect to what is possible in this regard, so

far with limited success (Methods). Further investigation to delineate which model parameters

are identifiable from data would be beneficial.

The platform has a relatively low barrier to widespread implementation. It can be realized

by expanding the computational backend of existing exposure notification apps. High-preci-

sion proximity data are now available through Bluetooth protocols [15], and lower-precision

location data from mobile devices have been exploited commercially for some time. Statistical

techniques may be required to optimize the reconstruction of contact networks from such

proximity data in practical implementations with imperfect knowledge of contact patterns

[38]. To be effective, the platform requires that users provide proximity data and other crowd-

sourced data, such as test results and reports of clinical symptoms. The more detailed data

users make available, the more accurate and detailed risk profiles can be produced in return.

Uptake rates of exposure notification apps have already reached up to 75% in some urban

areas, as in our simulated scenarios (e.g., more than 90% of Singapore’s population over 6

years of age [39] is using an exposure notification app). Uptake rates on a national scale so far

have been more modest (e.g., a third of the UK population [18]), in part, for example, because

of rural-urban digital divides but also, probably, because of the limited information provided

by current exposure notification apps. However, smartphone usage rates worldwide are

around 50% and continue to grow rapidly [40]; thus, widespread use of network DA in future

epidemics will become technically possible. And while routine surveillance test rates in much

of the world are still low, more widespread surveillance testing on the scale of major cities or

regions at this point is feasible; for example, NYC currently is already testing up to roughly

2.5% of its population daily [41]. Our conclusions provide further evidence of the benefits of

widespread testing, especially when that is combined with network DA to spread the test infor-

mation over dynamic contact networks assembled from proximity data.

Challenges to widespread and successful adoption of a network DA platform center around

equity, compliance, and privacy questions. Smartphone use is not equitably distributed within

the population, and there are disincentives (e.g., unavailability of sick leave) to comply with

individual contact interventions. Conversely, classification of users as “low risk” may encour-

age risky and counterproductive behavior. It is also unknown, and we did not address, how

correlations between smartphone use, compliance, and factors influencing infection risk
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would affect our results. An additional impediment to widespread adoption of network DA

are concerns about protecting users’ privacy. The network DA platform requires data to be

transferred temporarily to a central computing facility for data assimilation [42]. This makes

the platform more difficult to harden against malicious exploitation than exposure notification

apps, which only require central data exchange when there is direct evidence of an infection

[43]. Nonetheless, the data need not be stored beyond a data assimilation window that is at

most a few days long. Additionally, the platform requires only anonymized proximity data but

not absolute location data, and it does not rely on humans in the loop, reducing risks of mali-

cious exploitation. There may be ways to harden the platform itself and the data exchange with

users against privacy breaches [44].

The network DA platform provides obvious benefits in managing and controlling epidem-

ics, for example, in reducing the need for lockdowns while preventing infections and deaths,

and in providing users tools to manage their personal risks. It provides a scalable alternative to

manual TTI programs, and a backend that delivers more accurate and actionable information

than current digital TTI and exposure notification programs developed by many governments

[39, 45]. The effectiveness of such programs has been modelled [7–9], but their impact in prac-

tice is only beginning to be elucidated [18]. Given that many TTI programs are voluntary, and

documentation of contacts in manual programs is subjective, it will be important to compare

both the control and cost effectiveness of manual and digital trace programs with the more

objective and automated network DA approach presented here.

In addition to its health impacts, the COVID-19 pandemic has exacted an enormous eco-

nomic toll on countries throughout the world [3, 4]. There is a continuing need to identify

approaches that precisely and effectively control epidemics while minimizing economic dis-

ruption. With sufficient uptake and testing, the platform described here provides a means for

achieving these dual aims.

Methods and models

SEIHRD model on a contact network

We consider a population of N individuals i (with i = 1, . . ., N). At any time t, an individual i is

in exactly one of six possible health and vital states:

1. Susceptible Si(t) when they can get infected with the virus;

2. Exposed Ei(t) when infected with the virus but not yet infectious;

3. Infectious Ii(t) when shedding the virus (with or without clinical symptoms) but not

hospitalized;

4. Hospitalized Hi(t) when hospitalized with active disease, in which case individuals are

assumed to be shedding virus;

5. Resistant Ri(t) when immune to the disease through either vaccination or immunity con-

ferred by a prior infection (we assume lifelong resistance for now but can relax that assump-

tion if evidence becomes available that immunity is temporary);

6. Deceased Di(t).

We take Si(t), Ei(t), Ii(t), Hi(t), Ri(t), and Di(t) to be Bernoulli random variables that depend

on time t and take only the values 0 and 1. That is, Si(t) = 1 when individual i is susceptible at

time t, and otherwise Si(t) = 0 (and analogously for the other variables). Because the six
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SEIHRD states enumerate all health and vital states of individuals in this model, we have

SiðtÞ þ EiðtÞ þ IiðtÞ þHiðtÞ þ RiðtÞ þ DiðtÞ ¼ 1 : ð1Þ

Therefore, there are only 5 independent states.

In the network epidemiology model, a close contact between individuals i and j establishes

a temporary network edge with weight wji(t) = 1 for the duration τ of the contact; outside the

contact period, wji(t) = 0. Transmission along the temporary edges from one node to another

and transitions between health and vital states within each node are modeled as independent

Poisson processes [22, 23, 27, 46]. Each process is characterized by a rate that may vary from

node to node and may depend on external variables such as age, sex, and medical risk factors

(see S1 Fig for a schematic).

We make the following assumptions about the transmission rate and the parameters char-

acterizing transition rates between SEIHRD states, including prior distributions used in the

network model for DA:

• Transmission rate: During the contact period between an infectious or hospitalized individ-

ual (Ij(t) = 1 or Hj(t) = 1) and a susceptible individual (Si(t) = 1), virus can be transmitted

across the edge between nodes j and i. When transmission occurs, the susceptible node i
becomes exposed and switches state to Ei(t) = 1. During the contact period in which an edge

is active (wji(t) = 1), we assume the transmission rate to a susceptible node with Si(t) = 1

from an infectious node with Ij(t) = 1 is kI
ji ¼ ajiðtÞb, and that from a hospitalized node with

Hj(t) = 1 is kH
ji ¼ a0jiðtÞb. The parameter β is a transmission rate across active edges, which

we set to a global constant in the stochastic surrogate-world simulations and learn on a

nodal basis in the model used for DA; aji(t) and a0jiðtÞ are time-dependent transmission mod-

ifiers that can be adjusted to incorporate additional information that may be available, for

example, user-supplied information that individual i is using PPE at time t. In our proof-of-

concept simulations, we use aji(t) = 0.1 within hospitals and ajk(t) = 1 otherwise, to reflect

the rarity of SARS-CoV-2 transmission in hospitals in which PPE is worn [47]. (In reality,

however, depending on the types of PPE and adherence to hygiene protocols, the degree of

transmissibility reduction may vary substantially among hospitals [47]). A typical value for

the transmission rate of respiratory viruses is around β = 0.5 h−1 = 12 day−1 [48].

Because we model transmission as a Poisson process, the probability that transmission

occurs during contact increases with the duration of the contact period τ, e.g., for an infec-

tious node as [49]

TjiðtÞ ¼ 1 � e� k
I
jit :

(This holds provided the contact period τ is short relative to the duration of infectiousness,

so that the infectiousness status of a node does not change during contact).

In the model used for DA, we do not assume perfect knowledge of the transmission rate;

instead, we learn a partial transmission rate βi for each node i, and compute transmission rates

from node j to node i as the averages kI
ji ¼ 0:5ajiðtÞðbi þ bjÞ and kH

ji ¼ 0:5a0jiðtÞðbi þ bjÞ. We

assume independent normal priors for βi for each node, with a mean of 12 day−1 and a stan-

dard deviation of 3 day−1. We truncate these distributions to [1 day−1, 20 day−1], though in

practice these bounds are rarely reached.

• Latent period: Exposed nodes with Ei(t) = 1 transition to being infectious with Ii(t) = 1 at the

rate σi, which is the inverse of the latent period: the time it takes for an exposed individual to

become infectious. For COVID-19, the latent period lies between about 2 days and about 12

days [6, 10, 50]. We take the latent period s� 1
i to be fixed for each node i but heterogeneous
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across nodes. In the model used for DA, we represent it as s� 1
i ¼ 1 dayþ li, where li has a

gamma prior distribution with shape parameter k = 1.35 and scale parameter θ = 2 day;

hence, the minimum latent period is 1 day, and its prior mean value is 3.7 days (1 day + kθ).

• Duration of infectiousness in community: Infectious nodes with Ii(t) = 1 transition to resis-

tant, hospitalized, or deceased at the rate γi, which is the inverse of the duration of infectious-

ness in the community (i.e., outside hospitals). For COVID-19, the median duration of

infectiousness is around 3.5 days [10], but its distribution has a long tail, for example, from

individuals with serious or critical disease progression [12]. Like σi, we take γi to be fixed for

each node i but heterogeneous across nodes. In the model used for DA, we model the dura-

tion of infectiousness as g� 1
i ¼ 1 dayþ gi, where gi has gamma prior distribution with shape

parameter k = 1.1 and scale parameter θ = 2 days; hence, the minimum duration of infec-

tiousness is 1 day, and its prior mean value is 3.2 days [10, 12].

• Duration of hospitalization: Hospitalized nodes with Hi(t) = 1 transition to resistant or

deceased at the rate g0i, which is the inverse of the duration of hospitalization. As before, we

take g0i to be fixed for each node i but heterogeneous across nodes. In the model used for DA,

we model the duration of hospitalization as g0� 1
i ¼ 1 dayþ g 0i , where g 0i has a gamma prior

distribution with shape parameter k = 1.0 and scale parameter θ = 4 days; hence, the mini-

mum duration of hospitalization is 1 day, and its prior mean value is 5 days. We assume hos-

pitalized nodes are infectious. (If there is evidence that a hospitalized patient no longer sheds

the virus, this can be taken into account by setting the transmission rate modifier aji(t) from

the corresponding node to zero; however, we are not considering this situation in our proof-

of-concept.)

• Hospitalization rate: We assume a fraction hi of infectious nodes with Ii(t) = 1 requires hospi-

talization after becoming infectious. More precisely, we assume that infectious nodes transi-

tion to becoming hospitalized at the rate hi γi. This implies that, over a period Δt that is short

relative to the duration of infectiousness g� 1
i , the probability of transitioning from being

infectious to hospitalized, relative to the total probability of leaving the infectious state, is

1 � e� higiDt

1 � e� giDt
� hi for giDt � 1 :

We take hi to be fixed for each node i but heterogeneous across nodes; it generally depends

on age and other risk factors [25, 51]. We model the age dependence in the stochastic surro-

gate-world simulations according to clinical data as described below (Table 1), and we

assume the same parameters in the model used for DA.

• Mortality rate: We assume a fraction di of infectious nodes with Ii(t) = 1 and a fraction d0i of

hospitalized nodes with Hi(t) = 1 die. More precisely, we assume infectious nodes die at the

rate di γi, and hospitalized nodes die at the rate d0ig
0
i. Both di and d0i are fixed for each node

but are heterogeneous across nodes, depending on age and other risk factors [25, 51]. Both

in the stochastic surrogate-world simulation and in the model used for DA, we assume the

same age-dependent mortality rates (Table 1).

• Resistance: For now, we assume resistance to be lifelong, so that an individual who becomes

resistant remains so indefinitely and does not return to being susceptible. This assumption

can be relaxed by allowing transitions back to the susceptible state if resistance is not

permanent.

The health and vital states and transition rates define a Markov chain for the individual-

level SEIHRD states. The SEIHRD Markov chain on a contact network can be simulated
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directly with kinetic Monte Carlo methods [52], as in previous studies [46, 48, 53, 54]. We use

kinetic Monte Carlo simulations both to benchmark a model for the SEIHRD probabilities

and to provide a surrogate for the real world in our proof-of-concept simulations.

Reduced master equations

We are principally interested in the individual SEIHRD probabilities, which are the expected

values hSi(t)i, hEi(t)i, etc. associated with the Bernoulli random variables for the states. That is,

hSi(t)i is the probability that individual i is susceptible at time t.
These probabilities could be obtained as averages over an ensemble of kinetic Monte Carlo

simulations; however, it is more computationally efficient to solve reduced master equations

for the probabilities directly. The equations are [23, 55]

h _Sii ¼ � ½zi þ kx
i hwiiPðtÞZi�hSii ; ð2aÞ

h _Eii ¼ ½zi þ kx
i hwiiPðtÞZi�hSii � sihEii ; ð2bÞ

h_I ii ¼ sihEii � gihIii ; ð2cÞ

h _Hii ¼ higihIii � g0ihHii ; ð2dÞ

h _Rii ¼ ð1 � hi � diÞgihIii þ ð1 � d0iÞg
0
ihHii ; ð2eÞ

h _Dii ¼ digihIii þ d0ig
0
ihHii ; ð2fÞ

where

ziðtÞ ¼
P ~N

j¼1
wjiðtÞðkI

jihSiðtÞIjðtÞi þ kH
ji hSiðtÞHjðtÞiÞ

hSii
ð2gÞ

is the total infectious pressure on node i from within the network formed by the ~N users. The

infectious pressure represents the possibility of transmission to node i from all network nodes

Table 1. Age-dependent mean hospitalization and mortality rates in the surrogate-world simulation. The share

f(a) of the population in each age group a is taken from U.S. Census data [69]. The age-dependent death rate in hospi-

tals d0 is obtained from cumulative hospitalization and death rates in NYC by June 1, 2020 [36], under the assumption

that 90% of deaths occurred in hospitals. Age-dependent hospitalization rates h(a) and mortality rates d(a) in the com-

munity (outside hospitals) are difficult to obtain directly from NYC data because of an age-dependent undercount of

infections [37]. We choose hospitalization rates h(a) that approximate data from France [70], adjusting the rates so that

the overall hospitalization rate is ∑a f(a)h(a)� 3.1%, which is NYC’s overall hospitalization rate if one assumes a cumu-

lative COVID-19 incidence rate of 23% [71], together with NYC’s actual hospitalization count (52,333 on June 1, 2020)

and population (8.34 million) [36]. Similarly, the mortality rate in the community d(a) is chosen such that the overall

infection fatality rate is ∑a f(a)[d(a) + h(a)d0(a)]� 1.1%, which is NYC’s overall infection fatality rate if one considers

the same cumulative incidence of 23% and the confirmed and probable cumulative death count from COVID-19

(21,607 by June 1, 2020).

Age group a (yrs) f(a) h(a) d(a) d0(a)

0–17 20.7% 0.2% 0.0001% 1.9%

18–44 40.0% 1.0% 0.001% 7.3%

45–64 24.5% 4.0% 0.1% 19.3%

65–74 8.3% 7.6% 0.7% 32.7%

�75 6.5% 16.0% 1.5% 51.2%

https://doi.org/10.1371/journal.pcbi.1010171.t001
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that are at least temporarily connected with node i. Additionally, we have included an exoge-

nous infection rate ηi. This allows for infection from outside the network of ~N users when the

master equation network represents only a subset of a larger network with N nodes, and so

transmission can occur from unaccounted nodes. The exogenous infection rate ηi is scaled by

the number of external neighbors kx
i of node i that are not part of the user network, by the

probability hwii of an edge of node i being active, and by the time-dependent prevalence of

infectiousness P(t), estimated from the network of ~N users as described below in (11). The

probability of exogenous infection then increases with the prevalence of infectiousness P(t)
within the user base, which is taken as a proxy of prevalence outside the user base. In an ideali-

zation that may not be achievable in practice, we take the number of external neighbors kx
i as

given from the network structure. In practice, the number of external neighbors can be esti-

mated through use of the same proximity technologies (e.g., Bluetooth) on which exposure

notification apps rely, which allow the sensing of other nearby mobile devices, even if they do

not participate in the proximity sensing and exposure notification protocol. While this is

unlikely to yield perfect knowledge about the number of external neighbors, it may be com-

bined with statistical approximations [38]. The net effect of these assumptions and approxima-

tions is that a user surrounded by other users will have no exogenous infection rate, while

users with many external neighbors will have a larger exogenous infection rate. We have con-

firmed in simulations that exact knowledge of the number of neighbors can be replaced by sta-

tistical knowledge; for example, replacing the node-dependent kx
i by the user-network average

for all nodes (external connectivity in Table 2) yields similar results (S15 and S16 Figs).

We integrate these ordinary differential equations with a Runge-Kutta-Fehlberg 4(5)

scheme, with an adaptive timestep of maximum length 3 hours. The weights wji(t) vary on

shorter timescales. This is taken into account in the numerical integration by averaging wji(t)
over the length of a time step, rather than evaluating wji(t) at discrete intervals.

Closure of reduced master equations

The master equations (2) for the probabilities are not closed because they depend on the joint

probabilities hSi(t)Ij(t)i and hSi(t)Hj(t)i in the infectious pressure (Eq 2g). Various approaches

to closing this term have been proposed [23, 27, 55]. Our approach is to estimate it from the

ensemble used in the DA cycle, as follows.

The joint-event probability hSi(t)Ij(t)i and the marginal probabilities hSi(t)i and hIj(t)i in

the master equations are related through the ratio

C SiðtÞ; IjðtÞ
h i

¼
hSiðtÞIjðtÞi
hSiðtÞihIjðtÞi

; ð3Þ

which is the rescaled joint probability of Si(t) and Ij(t). We estimate the rescaled joint

Table 2. Details of the different user bases. The percentage represents approximately ~N=N, for the user population ~N . The interior defines how many users are

completely surrounded by other users. The exterior connectivity gives the average number of exterior nodes connected to a node inside the user base.

Type Population Interior Exterior connectivity

75% neighbor 73,456 21,499 1.9

50% neighbor 48,971 6,301 5.2

25% neighbor 22,381 2,107 10.0

75% random 73,353 7,061 3.1

50% random 48,371 550 6.3

25% random 24,482 33 9.3

https://doi.org/10.1371/journal.pcbi.1010171.t002
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probability C½SiðtÞ; IjðtÞ� by its ensemble analogue

CM SiðtÞ; IjðtÞ
h i

¼
hSiðtÞihIjðtÞi

hSiðtÞi hIjðtÞi
; ð4Þ

where ð�Þ ¼ M� 1
P

mð�Þ denotes the mean over the ensemble (with m = 1, . . ., M labeling ensem-

ble members). Thus, we approximate the joint probability in the infectious pressure (Eq 2g) as

hSiðtÞIjðtÞi ¼ hSiðtÞi hIjðtÞi CM½SiðtÞ; IjðtÞ�: ð5Þ

With this empirical approximation, we obtain a closed-form expression for the second

moment hSm
i ðtÞI

m
j ðtÞi for each ensemble member m, which we use in the reduced master

equations. The second moment hSm
i ðtÞH

m
j ðtÞi follows analogously. If CM½SiðtÞ; IjðtÞ� ¼ 1

and CM½SiðtÞ;HjðtÞ� ¼ 1, this reduces to the mean-field approximation that is commonly

made in epidemiological models [23, 55] and that often is accurate on real-world networks

[56].

We verified this closure against direct kinetic Monte Carlo simulations of the SEIHRD

model on the synthetic network described below, in the free-running NYC simulation without

lockdown (Fig 2). The closure has similar performance as the mean-field approximation and

adequately, albeit not perfectly, captures the stochastic network dynamics (S2 and S3 Figs).

The closure correction coefficients (4) concentrate close to the value of 1 (S4 Fig), which

explains the similar performance to the mean-field approximation.

Data assimilation algorithm

For DA, we use a version of the ensemble adjustment Kalman filter (EAKF) [28], which has

previously been used with epidemiological models [5, 10, 29, 30]. EAKF treats an ensemble of

M model parameters and states hSm
i ðtÞi, hE

m
i ðtÞi, etc. (m = 1, . . ., M) from a previous DA cycle

as a prior and then linearly updates the ensemble of model parameters and states to obtain an

approximate Bayesian posterior given the available data. Unlike other algorithms for comput-

ing Bayesian posteriors on networks [57], it makes no assumptions about the network struc-

ture, and it scales well to high-dimensional problems [28].

To learn about parameters and the states of nodes on the network, we use a scheme based

on iterating forward passes of the master equations over a time window Δ, with EAKF updates

between each pass; a similar scheme has been used in epidemiology models before [5, 10, 29,

30]. In this way, we effectively use EAKF as a smoother, harnessing all available data in a DA

window (tf − Δ, tf). There are two parts to the DA procedure:

1. Update stage: An EAKF update step is performed to assimilate all data available for the win-

dow (tf − Δ, tf), using the previous ensemble model run as prior. The mismatch between the

simulated ensemble trajectories and the data is used to update the combined ensemble of

parameters and states at the initial time tf − Δ.

2. Forecast stage: The updated ensemble of states hSm
i ðtf � DÞi, hE

m
i ðtf � DÞi, etc., with the

updated model parameters, is integrated forward up to time tf, to serve as prior for the next

update cycle.

EAKF relies on linear updates and assumes Gaussian error statistics. However, the forward

equations (2) are nonlinear. As a result, the EAKF update does not always conserve total prob-

ability, in the sense that SEIHRD probabilities for each node will not always sum to 1. We

therefore augment the state with an additional total probability conservation variable, with

observation equal to the target probability sum 1. The Gaussian assumption is also at odds
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with probabilities in [0, 1]. We have experimented with approaches of transforming variables

to an unbounded space, leading to total probability conservation becoming highly nonlinear.

We found it to be more robust to work in the original space where total probability conserva-

tion is a linear constraint. This approach does, however, violate Gaussianity assumptions

about the ensemble when we reinforce the probability bounds by clipping the states

hSm
i ðtf � DÞi, hE

m
i ðtf � DÞi, etc. to [0, 1].

We assume data errors to be uncorrelated, so that their error covariance matrix is

diagonal (see below for how we specify error variances in the proof-of-concept simulations).

Prior information on parameters and states is specified in EAKF through the initial condition

of the ensemble. We draw the parameters of the ensemble from the above-specified prior dis-

tributions, and we initialize the state by seeding each ensemble member with a fraction of (pos-

sibly different) infectious nodes, the rest being susceptible. The initial fraction of infectious

nodes is drawn from a beta distribution with shape parameters α = 0.0016 and β = 1 (not to be

confused with the transmission rate β). The mean fraction (here, 0.16%) of initially infected

nodes agrees with the fraction of initially infected nodes in the stochastic surrogate-world

simulations.

To account for the multi-fidelity nature of the assimilated data, we perform EAKF in multi-

ple passes. This allows for better conditioned data covariance matrices and for different hyper-

parameter choices for the different types of data. We perform the following passes to

assimilate data from the lowest to the highest fidelity:

• In a first EAKF pass, we update parameters and states at tf − Δ using the poorest fidelity data

(e.g., temperature sensor data), followed by a forecast over (tf − Δ, tf);

• In a second EAKF pass, we update parameters and states at tf − Δ using moderate-accuracy

diagnostic test data, followed by another forecast over (tf − Δ, tf);

• In a final EAKF pass, we update parameters and states at tf − Δ using data about hospitaliza-

tion and death status with small error variances, followed by a final forecast over (tf − Δ, tf).

There are three well-established challenges that ensemble-based filters must tackle

when assimilating a number of parameters/states that is large relative to the ensemble size [58]:

overestimation of long-range covariances, underestimation of variances, and ensemble

collapse.

1. To prevent spurious long-range covariances, we localize the effect of observations on

states within a single node [58, 59]. That is, direct updates of a nodal state are only due

to observations at that node during the DA window. This also provides large computa-

tional savings because EAKF updates may be performed sequentially node-by-node, in any

order.

2. To prevent underestimation of variances by the finite-size ensemble, which can lead to

discounting of data points [28], and to ensure well-posedness of the matrix inversions,

we use regularization of the ensemble covariance matrix S. If Λmin and Λmax denote the

minimum and maximum eigenvalues of S, we replace S in the EAKF algorithm with

with S + max(δ(Λmax − Λmin), δmin)I. We choose δ = 5/M to assimilate diagnostic test

data, and δ = 1/M to assimilate hospitalization/death status; δmin is taken to be the mean

observational noise standard deviation of the update.

3. To prevent ensemble collapse, we add a hybrid inflation to an assimilated state with a map

x 7! aðx � �xÞ þ �x þ Nð0; b�xÞ, where �x is the ensemble mean state and Nð0; b�xÞ is Gaussian

noise with mean zero and standard deviation b�x [58]. We take a = 3.0 and b = 0.1.
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Because of the binary nature of the hospitalization and death data, we do not update

these states directly; doing so can lead to shocks in the system dynamics. We only update the

SEIR states hSi(tf − Δ)i, hEi(tf − Δ)i, hIi(tf − Δ)i, hRi(tf − Δ)i at the beginning of a DA window

tf − Δ� t� tf when assimilating hospitalization and death data that fall within the DA window.

Synthetic network for proof-of-concept

We generate a synthetic time-dependent contact network in two steps:

1. We generate a static degree-corrected stochastic block model (SBM) [60, 61], consisting of

N nodes in three groups. The three groups represent (a) hospitalized patients, (b) healthcare

workers with contacts both within hospitals and in the community, and (c) the community

of all remaining individuals (e.g., people in an urban environment). Hospital beds in group

(a) are filled when infected nodes become hospitalized; we assume an infinite supply of hos-

pital beds. Healthcare workers in group (b) make up 5% of all nodes, and the remaining

95% of nodes constitute group (c).

We describe connections within groups (a) and (b) with an Erdős–Rényi model and use

mean degrees of 5 in group (a) and 10 in group (b), based on a social-contact analyses in a

hospital setting [62]. Hospitalized patients in group (a) can interact only with each other

and with the healthcare workers in group (b). To model the interactions between groups (a)

and (b), we set the corresponding mean degrees per node to 5 for edges connecting the

groups. We parameterize the contacts among nodes in the community group (c) with a

power-law degree correction. As pointed out in [63], when groups are ignored, degree dis-

tributions associated with social interactions are well-described by a negative binomial dis-

tribution, which, for example, has also been used to describe degree distributions associated

with sexual-contact networks [64]. In the presence of groups, however, degree distributions

of social-interaction networks have been found to exhibit a power-law tail with an exponent

of about 2.5 [63]. In accordance with the results presented in [63, 65], we therefore describe

parts of the synthetic contact network by a stochastic block model with power-law degree

correction with exponent 2.5, mean degree k̂ ¼ 10, and maximum degree 100; S5 Fig

shows the degree distribution. The community (c) as a group only interacts with healthcare

workers (b), and we set the corresponding mean degree to 5.

2. To model time-dependence of the network, we make the edges of the static SBM network cre-

ated in the first step time-dependent by switching them on and off. That is, neighbors of all

nodes remain fixed in time, but their connections are activated or deactivated with time. We

account for day/night cycles in the edge weights wji(t), but we ignore, e.g., weekly cycles. We

generate a diurnal cycle that replicates some properties of observed time-dependent human

contact networks [66]: The fraction of active edges is small at night and in the early morning

hours, reaches a maximum around noon, and approaches small values again in the evening.

To model the time-dependence of wji(t), we use a birth-death process commonly used in

queuing theory. The birth-death process is a Markov chain in which arrivals (edge activa-

tions) are inhomogeneous Poisson processes with a diurnally varying mean rate Aji(t); con-

tact durations are exponentially distributed with a mean contact duration τ (i.e., a mean rate

parameter μ = τ−1). We choose a mean duration of τ = 2 min (hence μ = 720 day−1), based

on high-resolution human contact data [48]. We model the mean edge activation rate as

AjiðtÞ ¼
1

k̂
max minðlj;min; li;minÞ; minðlj;max; li;maxÞ 1 � cos4 pt

1 day

� �� �4
( )

: ð6Þ

Here, t = 0 starts at midnight, and k̂ is the mean degree of the network in the community
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group (c), so that k̂Aji, when averaged over edges, is an average contact rate per node. The

diurnally averaged edge activation rate then is

�Aji ¼
1

1 day

Z 1 day

0

AjiðtÞ dt: ð7Þ

For the minimum and maximum contact rates per node, λi,min and λi,max, we choose the

default values λmin = 4 day−1 and λmax = 84 day−1. If the default contact rates apply for all

nodes, this gives for the community group (c) a mean contact rate per node of

k̂ �Aji � 37:7 day� 1
; ð8Þ

this is about a factor 3–4 larger than typical human contact rates as assessed by self-reports

[67], consistent with the fact that we also take fleeting contacts into account that would

likely not be self-reported. The minimum and maximum contact rates λi,min and λi,max for a

node i are the principal parameters we vary to explore the effect of contact interventions.

Reducing λi,min and λi,max for a node reduces the fraction of time edges connecting to node i
are active. The contact rate and total contact duration over the network for five simulated

days are displayed in S6 Fig.

The time dependencies of all edges wji(t) are treated as independent. We update the time-

dependence of each edge at midnight every simulated day, running independent birth-

death processes with parameters Aji(t) and μ for the next day.

If a node becomes hospitalized, it is deactivated at its previous location in the network and

transferred to the hospital group (a). Hospitalized nodes are assumed to be infectious. (This

assumption may later be relaxed to model the situation that a patient is no longer infectious

but may still be hospitalized with ongoing disease).

Different choices of network architecture are, of course, possible and justifiable. The net-

work merely serves to generate simulated data for our proof-of-concept, and the algorithms

we demonstrate adapt to any network architecture, which in practice would be provided by

proximity data. We do not expect our results to depend sensitively on our choice of network

architecture.

Selection of subnetwork for user base

To select a subnetwork for a user base with ~N < N users, we construct subgraphs with two dif-

ferent topologies. First, a neighbor-based subgraph is constructed from a randomly selected

seed user, by adding all neighbors of this user to the subgraph, then in a greedy fashion adding

all neighbors of each member of this new subgraph, and so on, until a desired user population

is reached. Second, a random subgraph is constructed by randomly choosing nodes from the

full network. S7 Fig illustrates the different user base topologies, and Table 2 summarizes their

characteristics.

From Table 2, we see the topology of the user base affects the average number of external

neighbors. To mitigate this effect, we take into account that users can be infected by neighbors

external to the user base, through the additional infectious pressure terms in the equations for

h _Sii and h _Eii in Eq (2). Such neighbors are still detectable by proximity technologies (e.g., Blue-

tooth), but because they are not users of the network DA protocol, we do not know their cur-

rent state.
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Surrogate world simulation

To generate surrogate worlds with which to test the DA algorithm and interventions, we simu-

late epidemics on the synthetic network stochastically with kinetic Monte Carlo methods [52].

For these stochastic simulations (but not for the model used for DA), we choose mean trans-

mission and transition rates between SEIHRD states that are homogeneous across nodes,

except for hospitalization and mortality rates that depend on age. The mean rates we use are

based on current knowledge about COVID-19 (Table 3). We simulate 20 epidemics that only

differ in their random seed. They are initialized on March 5, 2020, with 0.16% of nodes ran-

domly assigned to be infectious.

The dependencies of the hospitalization rate hi = h(a) and mortality rates di = d(a) and

d0i ¼ d0ðaÞ on age a are estimates based on recent data (Table 1). To model age-dependent dis-

ease progression, we randomly assign ages to network nodes in the community group (c)

according to the age distribution for NYC, as given by U.S. Census data [69]. Additional fac-

tors we neglect in our synthetic examples, such as age-dependent contact patterns, are likely

small perturbing factors for the risk assessment results we show. We assign ages to nodes in

the healthcare worker group (b) according to the age distribution among working-age adults

(21–65 years old). Initially, there are no hospitalized nodes (i.e., group (a) is empty).

The network has 97,942 nodes (with the difference to 100,000 arising from stochastic effects

in the generative algorithm). We choose the global mean transmission rate β so that our simu-

lations are qualitatively aligned with the evolution of the COVID-19 epidemic in NYC [36].

We find that a global value of β = 12 day−1 can qualitatively reproduce the observed rate of

infections and can quantitatively reproduce the rate of hospitalizations and deaths during the

initial phases of the epidemic in NYC.

Synthetic data

We sample synthetic data from the stochastic surrogate-world simulation on the network with

N nodes and assimilate data for a possible subset of ~N � N users in the reduced master equa-

tion model. We consider the following data and error rates:

• A positive virus test for node i is taken to imply

hIiðtÞi ¼ PPV ð9Þ

Table 3. Mean transmission and transition rates and maximum/minimum contact rates for the surrogate-world

simulations with the stochastic SEIHRD model (S1 Fig). The mean rates are taken to be the same for all nodes;

hence, the nodal indices are suppressed. The latent period σ−1 and duration of infectiousness in the community γ−1 are

approximated from those in refs. [10] and [12]; the duration of hospitalization γ0−1 is from ref. [68], and the transmis-

sion rate β is fit to be consistent with data for respiratory viruses [48] and to roughly reproduce NYC data.

Parameter Value

β, κI 12 day−1

κH 0.1β

σ (3.7 day)−1

γ (3.2 day)−1

γ0 (5 day)−1

λmax 84 day−1

λmin 4 day−1

https://doi.org/10.1371/journal.pcbi.1010171.t003
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at the time the test sample is taken. The positive predictive value (PPV) is calculated as

PPV ¼
sensitivity � PðtÞ

sensitivity � PðtÞ þ ð1 � specificityÞ � ð1 � PðtÞÞ
; ð10Þ

where we take the sensitivity of the test to be 80% and the specificity to be 99%, which we use

as an approximation of the currently imprecisely known actual sensitivities and specificities

[72, 73]. As an estimate of the infectiousness prevalence P(t) in the population, we use the

average of the infectiousness probabilities both over the network of size ~N and over the

ensemble of size M,

PðtÞ ¼ max
1

~NM

XM

m¼1

X~N

i¼1

hImi ðtÞi;
1

~N

 !

: ð11Þ

The cutoff of ~N � 1 is included to guard against erroneously assuming prevalence to be zero

because of subsampling on the reduced network. For the DA, we assume an error rate of

1 − PPV for a positive test result.

• A negative virus test for node i is similarly taken to imply

hIiðtÞi ¼ FOR ð12Þ

at the time the test sample is taken. The false omission rate (FOR) is calculated as

FOR ¼
ð1 � sensitivityÞ � PðtÞ

ð1 � sensitivityÞ � PðtÞ þ specificity � ð1 � PðtÞÞ
;

with the same sensitivity, specificity, and prevalence as for a positive virus test. For the DA,

we assume an error rate equal to FOR for a negative test result.

• To assimilate low-fidelity data such as those from temperature sensors, we assume hIi(t)i =

PPV as for a positive virus test when they indicate infectiousness (e.g., when a temperature

reading is elevated). However, we use a sensitivity of 20% and specificity of 98% to reflect the

lack of sensitivity of temperature sensors in detecting COVID-19 infection [20]. For the DA,

we assume an error rate equal to 1 − PPV, analogous to a positive virus test.

• Data about hospitalization with COVID-19 imply that Hi(t) = 1 for the duration of hospitali-

zation. We assume the hospitalization status of all users to be known with certainty, that is,

we assimilate the hospitalization status Hi(t) = 0 or Hi(t) = 1 for all users; however, we only

update the SEIR probabilities at the beginning of a DA window tf − Δ� t� tf with hospitali-

zation data.

• Death implies Di(t) = 1. We assume the vital status of all users to be known with certainty,

that is, we assimilate Di(t) = 0 or Di(t) = 1 for all users; as for hospitalization, however, we

only update the SEIR probabilities at the beginning of a DA window tf − Δ� t� tf with

death data.

• For completeness, we state that a positive serological test for SARS-CoV-2 for node i would

be taken to imply

hRiðtÞi ¼ PPV;

with the positive predictive value calculated from (10). Typical values for sensitivity would

be 90% and for specificity 95% [74], and the prevalence of resistance can be estimated from

the resistance probabilities on the reduced master equation network. We would again
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assume an error rate equal to 1 − PPV. However, we did not assimilate simulated serological

tests in our proof-of-concept because currently achievable serological test rates are low.

To model data errors, we randomly corrupt the synthetic data sampled from the surrogate

world network with the false positive and false negative rates implied by the sensitivity (false

negative rate = 1 − sensitivity) and specificity (false positive rate = 1 − specificity).

Testing strategy. We use a simple testing strategy that randomly tests a given budget of

nodes once per day. Our framework provides a testbed for different strategies. We found ran-

dom testing consistently outperformed three other simple strategies: (i) concentrating the test

budget on near-neighbors of positively tested nodes; (ii) continuous testing of a fixed subset of

the population; and (iii) testing nodes with high predicted infectiousness values. We attribute

this to the low prevalence of disease. However, it is possible that more effective testing strate-

gies can be discovered that exploit estimated nodal states, the network structure, and the inter-

vention strategy. In a real-world scenario, systematic biases in testing (e.g., testing biased

toward certain workplaces or educational institutions) may also affect quantitative details of

our results.

Parameter learning. In addition to assimilating probabilities of SEIHRD states, we can in

principle learn about parameters in the reduced master equation model (2), for example:

• Individual partial and time-dependent transmission rates βi;

• Individual inverse latent periods σi;

• Individual inverse durations of infectiousness γi and hospitalization g0i;

• Individual hospitalization rates hi and mortality rates di and d0i;

• Exogenous infection rates ηi.

We have not fully explored the efficacy of learning about the different parameters from

data. For now, we include only the partial transmission rates βi, the inverse latent periods σi,
and the durations of infectiousness γi and hospitalization g0i in the DA, all with the priors stated

above. S18 Fig shows the prior distributions of the parameters at the beginning of the epi-

demic, as well as the posterior distributions as the epidemic evolves and the network model

learns about the parameters. The results show that the DA does not refine the prior estimates

of the parameters. When priors were not initially centered on the true values, they remained

biased during the simulation. Further investigations focusing, for example, on learning statisti-

cal averages of parameters rather than individual node-per-node parameters would be

beneficial.

The hospitalization rates hi and mortality rates di and d0i are fixed at the same values as in

the stochastic surrogate-world simulation (Table 1). We assume the exogenous infection rates

ηi to be equal to the partial transmission rates βi, and we estimate the probability of an edge of

node i being active as

hwii ¼
�Ai

mþ �Ai
; ð13Þ

where �Ai is the diurnally averaged edge activation rate,

�Ai ¼
1

1 day

Z 1 day

0

AiðtÞ dt; ð14Þ
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with

AiðtÞ ¼
1

k̂
max li;min; li;max 1 � cos4 pt

1 day

� �� �4
( )

: ð15Þ

With our parameters, this is �Ai ¼ li;min=k̂ ¼ 0:4 day� 1
for isolated nodes and �Ai ¼ 3:77 day� 1

otherwise. For a stationary birth-death process, this estimate for hwii is the stationary probabil-

ity of an edge being active; it approximates the diurnally averaged probability in the case of the

birth-death process with diurnally varying edge activation rates. Through this probability hwii,

the exogenous infectious pressure depends on the isolation status of a node.

Classification in network DA. Nodes i in the community group (c) are classified as possi-

bly infectious (I i ¼ 1) or not (I i ¼ 0) according to

I i ¼
1 if hImi i > cI;

0 otherwise:

8
<

:
ð16Þ

Here, cI is a classification threshold, which can be determined from receiver operating charac-

teristic (ROC) curves as some optimum tradeoff between wanting to achieve high true positive

rates while keeping false positive rates modest. The ROC curves we use are adapted to the set-

ting in which we are primarily interested in the fraction of users that is classified as possibly

infectious (and thus may be asked to self-isolate). We plot the true positive rate (TPR, nodes

with I i ¼ 1 for which Ii = 1 in the stochastic simulation) against the predicted positive fraction

(PPF, fraction of nodes with I i ¼ 1 in the user base of size ~N ). ROC curves are traced out by

lowering the classification threshold cI, thereby increasing both TPR and PPF.

Classification in TTI. For the TTI scenarios, we assume the dynamic contact network

among users is known, as in the network DA scenarios, and we assume instantaneous tracing.

When a node i in the community group (c) is tested positive, it is classified as infectious; all

nodes that have had at least one 15-minute contact with node i within the preceding 10 days

are classified as exposed. All infectious and exposed community nodes are immediately iso-

lated. This TTI scheme mimics the methods of typical exposure notification apps; although it

is idealized and overestimates TTI performance achievable in practical settings [8, 75], it pro-

vides a fair baseline for comparison with network DA.

Contact interventions. We implement two types of intervention scenarios in our test

cases. In the first, a lockdown scenario (Fig 2), we set λi,max for all nodes in the community

group (c) to 33 day−1. This amounts to a reduction of the mean contact rate (8) in group (c) by

58%. In the second, a time-limited isolation intervention, we reduce the contact rates of tar-

geted high-risk nodes by setting λi,max = λi,min = 4 day−1; thus, these high-risk nodes are

assumed to self-isolate, with only 4 contacts per day on average, corresponding to a reduction

of their average contact rate by 91%.

The duration of contact reduction takes three possible values. In the lockdown scenario

(Fig 2), all nodes have contact reduction from the inception of the lockdown until the end of

the simulation. In the TTI scenario, self-isolating nodes have contact reduction for 14 days, in

accordance with current CDC guidelines [76], after which contact rates are reset to the original

values. For the network DA scenario, self-isolating nodes have contact reduction until they are

classified as negative (hImi i � cI) for a period of 5 consecutive days, after which contact rates

are reset to their original values. This corresponds to reinstatement of original contact rates for

50%, 90% and>99% of isolated nodes within 7, 14 and 21 days, respectively.
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Supporting information

S1 Fig. Schematic of SEIHRD model [25]. Infected and hospitalized nodes infect susceptible

nodes at rates κI and κH, respectively. After being infected, susceptible nodes become exposed.

Exposed nodes become infectious at rate σ. Infected nodes may get hospitalized at rate hγ, die

at rate dγ, or become resistant at rate (1 − h − d)γ. Once hospitalized, nodes either become

resistant at rate (1 − d0)γ0 or die at rate d0γ0.
(TIF)

S2 Fig. Overall epidemic dynamics from SEIHRD model using mean-field approxima-

tion.

(TIF)

S3 Fig. Overall epidemic dynamics from SEIHRD model using mean-field approximation

with ensemble correction.

(TIF)

S4 Fig. Histograms of correction coefficients (top row) CM½SiðtÞ; IjðtÞ� and (bottom row)

CM½SiðtÞ;HjðtÞ� at different times during the simulated epidemic.

(TIF)

S5 Fig. Distribution of degrees k in synthetic contact network with 97,942 nodes.

(TIF)

S6 Fig. Dynamic contact network behavior in the first five simulated days, batched into

3-hour windows (starting at midnight). Displayed are the ensemble-averaged and node-aver-

aged contact rate and total contact duration.

(TIF)

S7 Fig. Illustration of different user base topologies. (a) Neighbor-based user base, con-

structed by iteratively adding neighborhoods. (b) Random subnetwork of users. Red nodes

and edges are part of a user base, grey nodes and edges of the overall population. The shown

networks have 982 nodes and 5,916 edges. Both user bases contain 5% of all nodes.

(TIF)

S8 Fig. Hospitalization rates in surrogate-world simulation with a lockdown (blue) and

without (orange). The left panel shows cumulative hospitalizations and the right panel daily

hospitalizations per 100,000 population for the same simulations as those in Fig 2. Red bars

represent COVID-19-related hospitalization rates for New York City [36]. As in Fig 2, the sim-

ulation data are smoothed with a 7-day moving average filter.

(TIF)

S9 Fig. Receiver operating characteristic (ROC) curves for classification as possibly

infectious. As in Fig 3, but for subnetworks with randomly selected nodes rather than for

subnetworks with a neighborhood topology. For the filled circles, the 1%/day case falls out-

side the plotting region; values for panel (A) are (7×10−4, 0.009) and for panel (B) are

(2×10−4, 0.01).

(TIF)

S10 Fig. Comparison of different contact intervention scenarios for random user base with

~N=N ¼ 75%. As in Fig 5, but with a subnetwork with randomly selected nodes and with a

classification threshold cI = 0.25%.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Epidemic management and control through risk-dependent individual contact interventions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010171 June 23, 2022 27 / 32

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010171.s010
https://doi.org/10.1371/journal.pcbi.1010171


S11 Fig. Comparison of different contact intervention scenarios for neighborhood user

base with ~N=N ¼ 50% and with a classification threshold cI = 0.5%.

(TIF)

S12 Fig. Comparison of different contact intervention scenarios for random user base with

~N=N ¼ 50% and with a lower classification threshold cI = 0.25%. As in S11 Fig, but with a

subnetwork with randomly selected nodes.

(TIF)

S13 Fig. Comparison of different contact intervention scenarios for neighborhood user

base with ~N=N ¼ 25% and with a classification threshold cI = 0.25%.

(TIF)

S14 Fig. Comparison of different contact intervention scenarios for random user base with

~N=N ¼ 25% and with a lower classification threshold cI = 0.01%. As in S13 Fig, but with a

subnetwork with randomly selected nodes.

(TIF)

S15 Fig. As in Fig 5, comparison of different contact intervention scenarios for neighbor-

hood user base with ~N=N ¼ 75% and with a classification threshold cI = 1%, but replacing

the user-dependent number of external neighbours kxi by the constant exterior connectivity

from Table 2.

(TIF)

S16 Fig. As in S10 Fig, comparison of different contact intervention scenarios for random

user base with ~N=N ¼ 75% and with a classification threshold cI = 0.25%, but replacing

the user-dependent number of external neighbours kxi by the constant exterior connectivity

from Table 2.

(TIF)

S17 Fig. Cumulative death rate of users vs. non-users for the ~N=N ¼ 25% user base con-

sisting of nodes selected at random from the overall population network. Individual contact

interventions are applied within the user base from March 15 onward.

(TIF)

S18 Fig. Distribution of ensemble averaged model parameters across nodes as a function

of time during the epidemic. The shaded regions contain 50%, 80% and 90% of the distri-

bution. The dashed line represents the true parameters in the stochastic simulation. During

the first 8 days, no DA is performed, and the parameter distributions are the prior distribu-

tions.

(TIF)

Acknowledgments

We thank Tobias Bischoff, Mason Porter, and Andrew Stuart for helpful discussions.

Author Contributions

Conceptualization: Tapio Schneider, Chiara Daraio.

Formal analysis: Tapio Schneider, Oliver R. A. Dunbar, Jinlong Wu, Lucas Böttcher, Sen Pei,
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