Fast and Slow Terrestrial Carbon Cycle Feedbacks
—or—
How I learned to stop worrying and love both simple and complex models

Charlie Koven
Lawrence Berkeley National Lab

With
Rosie Fisher, Ryan Knox, David Lawrence, Gustaf Hugelius, Will Wieder, Bill Riley, Jeff Chambers, Robinson Negron-Juarez, Kat Georgiou, Lara Kueppers
What are the slow feedbacks?
(1) those, like permafrost, that seem to operate on the 100+ year timeframe

Koven et al., PNAS, 2015
What are the slow feedbacks?

(2) those that operate downstream of the fast, input driven feedbacks.
Starting with CMIP5 ESMs: Disaggregate controls on C changes via a linear analysis of equilibrium C changes

\[C_t = C_l + C_d \]

Live C Pools

\[\frac{dC_l}{dt} = f_{npp} - \frac{C_l}{\tau_l} \]

\[\hat{C}_l = f_{npp} \tau_l \]

\[\frac{d\hat{C}_l}{dt} = \frac{df_{npp}}{dt} \tau_l + \frac{d\tau_l}{dt} f_{npp} \]

Turnover-driven live C change

Productivity-driven live C change

Dead C Pools

\[\frac{dC_d}{dt} = f_{l \rightarrow d} - \frac{C_d}{\tau_d} \]

\[\hat{C}_d = f_{l \rightarrow d} \tau_d \]

\[\frac{d\hat{C}_d}{dt} = \frac{df_{l \rightarrow d}}{dt} \tau_d + \frac{d\tau_d}{dt} f_{l \rightarrow d} \]

Turnover-driven Dead C change

Productivity-driven Dead C change
What does it tell us to disaggregate the carbon feedbacks from CMIP5 ESMs?

- Strong stabilizing feedback from enhanced productivity under elevated CO2
- Large apparent reduction in turnover, but once removed, only a weak destabilizing feedback from enhanced decomposition under warming

Koven et al., *Biogeosciences*, 2015
“False Priming”

Really simple model experiment: take a multi-pool model (here 3 pool) with fixed turnover times for each pool. Start from steady-state and increase the inputs. What happens to the bulk turnover time?

Koven et al., *Biogeosciences*, 2015
But: an ecosystem is not a box, even though it is sometimes useful to model it like one

The Actual Amazon

!=

An Amazon Box
In models that resolve wood dynamics, changes to turnover under elevated CO2 lead to divergent carbon responses

Responses of wood carbon to CO2 fertilization at Duke FACE, and its drivers

- C_{wood}
- NPP
- G_{wood}
- $1/\tau_{\text{wood}}$

Walker et al., 2015
Productivity and mortality appear to both be rising. Are these opposing or related trends?

Brienen et al., 2015
Light Competition and the PPA

An emerging class of ESM land models resolve canopy growth and light competition.

The Perfect Plasticity Approximation (PPA) is one such approach: breaks forest into canopy layers with competition between trees to be in the upper level.
Light Competition and the PPA

An emerging class of ESM land models resolve canopy growth and light competition. The Perfect Plasticity Approximation (PPA) is one such approach: breaks forest into canopy layers with competition between trees to be in the upper level.
The combination of ED+PPA dynamics, on their own, are able to predict tropical forest tree size distributions: therefore a useful reduced-complexity model

FOREST ECOLOGY

Dominance of the suppressed: Power-law size structure in tropical forests

C. E. Farrior,1,2,* S. A. Bohlman,3,4 S. Hubbell,3,5 S. W. Pacala6

Tropical tree size distributions are remarkably consistent despite differences in the environments that support them. With data analysis and theory, we found a simple and biologically intuitive hypothesis to explain this property, which is the foundation of forest dynamics modeling and carbon storage estimates. After a disturbance, new individuals in the forest gap grow quickly in full sun until they begin to overtop one another. The two-dimensional space-filling of the growing crowns of the tallest individuals relegates a group of losing, slow-growing individuals to the understory. Those left in the understory follow a power-law size distribution, the scaling of which depends on only the crown area–to–diameter allometry exponent: a well-conserved value across tropical forests.
FATES schematic: lots of process complexity
A reduced-complexity FATES: “Prescribed Physiology Mode”
Blue: disabled; Green: Prescribed

Allows efficient sampling of rates that directly govern outcomes
How changes in productivity and turnover relate in reduced-complexity FATES system: 1 mean state

Use FATES model, which combined ED and PPA logic, in a reduced-complexity mode where growth and mortality rates in the canopy and understory can be set as parameters. Explore a 2-D parameter surface varying the mortality rates in canopy and understory, with fixed productivity.
How changes in productivity and turnover relate in reduced-complexity FATES system:

2 increased productivity

Now increase productivity by 25% (as if by CO$_2$ fertilization), holding mortality rates within each layer constant.

Ecosystem mortality rate increases because plants are pushed into understory faster where they die more quickly.
How changes in productivity and turnover relate in reduced-complexity FATES system: 3 Net C Response

But ΔBiomass/ΔNPP stays close to 1 despite increased mortality, because of a counteracting effect: shift to larger tree size \Rightarrow more carbon per unit crown area of a tree due to allometric relationships.

All of above for a 1-PFT system; unclear if it holds for early/late successional 2-PFT system, or across uncertainty of allometry.
What about soil carbon turnover, and its response (or lack in CMIP5) to warming?

Koven et al., 2017
Plot turnover as function of mean annual air temperature

Koven et al., 2017
Isolate temperature from moisture effects by ignoring gridcells that are either too wet or too dry

Koven et al., 2017
A simple scaling theory for why temperature sensitivity is high in cold climates

Using daily soil temperatures and mean annual air temperatures from a land surface model:

\[k = f(T) \]

\[\tau = 1/\bar{k} \]

1-Layer approach: \(Q_{10} = 1.5 \) when thawed, \(k = 0 \) when frozen, using 10cm soil temperatures

Koven et al., 2017
A simple scaling theory for why temperature sensitivity is high in cold climates

Using daily soil temperatures and mean annual air temperatures from a land surface model:

\[k = f(T) \]

\[\tau = 1/\bar{k} \]

Many-layer approach: \(Q_{10} = 1.5 \) when thawed, \(k = 0 \) when frozen, using soil temperatures at each level, and then calculate mean \(k \) across 0-1m interval

Implication: Properly representing the scaling of freeze/thaw in both volume and time is essential to understanding temperature controls on soil carbon cycling

Koven et al., 2017
A simple scaling theory for why temperature sensitivity is high in cold climates

Using daily soil temperatures and mean annual air temperatures from a land surface model:

\[k = f(T) \]

\[\tau = 1/\overline{k} \]

Many-layer approach: when thawed, \(k = 0 \) when frozen, using soil temperature at each level, and then calculate mean \(k \) across 0-1m interval

Implication: Properly representing the scaling of freeze/thaw in both volume and time is essential to understanding temperature controls on soil carbon cycling

Koven et al., 2017
How do CMIP5 ESMs compare to soil turnover benchmark?

Koven et al., 2017
Focus on scaling of sensitivity of decomposition to temperature and moisture, and learning from simple model, improves complex model performance against benchmark Lawrence et al $in prep$
Including the better scaling allows the model to show more complex behavior such as the permafrost carbon feedback.

Koven et al., PNAS, 2015
Conclusions

• If we are to learn from our models, we need to be constantly building and traversing hierarchies of complexity in them.

• The processes that are downstream of photosynthesis—growth, mortality, competition, decomposition—are particularly uncertain because (a) dynamic observations of them are so scarce, and (b) because we are still trying to figure out the basic structures of how to model them.

• Hence the need for both simple and complex but flexibly structured models to make progress.
Thanks!